Suppr超能文献

基于计算机断层扫描放射组学的乳腺癌治疗后骨质疏松预测模型。

A computed tomography radiomics-based model for predicting osteoporosis after breast cancer treatment.

机构信息

Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.

Department of Radiation Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.

出版信息

Phys Eng Sci Med. 2024 Mar;47(1):239-248. doi: 10.1007/s13246-023-01360-2. Epub 2024 Jan 8.

Abstract

Many treatments against breast cancer decrease the level of estrogen in blood, resulting in bone loss, osteoporosis and fragility fractures in breast cancer patients. This retrospective study aimed to evaluate a novel opportunistic screening for cancer treatment-induced bone loss (CTIBL) in breast cancer patients using CT radiomics. Between 2011 and 2021, a total of 412 female breast cancer patients who received treatment and were followed up in our institution, had post-treatment dual-energy X-ray absorptiometry (DXA) examination of the lumbar vertebrae and had post-treatment chest CT scan that encompassed the L1 vertebra, were included in this study. Results indicated that the T-score of L1 vertebra had a strongly positive correlation with the average T-score of L1-L4 vertebrae derived from DXA (r = 0.91, p < 0.05). On multivariable analysis, four clinical variables (age, body weight, menopause status, aromatase inhibitor exposure duration) and three radiomic features extracted from the region of interest of L1 vertebra (original_firstorder_RootMeanSquared, wavelet.HH_glcm_InverseVariance, and wavelet.LL_glcm_MCC) were selected for building predictive models of L1 T-score and bone health. The predictive model combining clinical and radiomic features showed the greatest adjusted R value (0.557), sensitivity (83.6%), specificity (74.2%) and total accuracy (79.4%) compared to models that relied solely on clinical data, radiomic features, or Hounsfield units. In conclusion, the clinical-radiomic predictive model may be used as an opportunistic screening tool for early identification of breast cancer survivors at high risk of CTIBL based on non-contrast CT images of the L1 vertebra, thereby facilitating early intervention for osteoporosis.

摘要

许多治疗乳腺癌的方法都会降低血液中的雌激素水平,导致乳腺癌患者发生骨丢失、骨质疏松症和脆性骨折。本回顾性研究旨在使用 CT 放射组学评估一种新的针对癌症治疗相关骨丢失(CTIBL)的机会性筛查方法。在 2011 年至 2021 年间,共纳入了 412 名在我院接受治疗并接受随访的女性乳腺癌患者,这些患者在治疗后进行了腰椎双能 X 射线吸收法(DXA)检查,且在治疗后进行了胸部 CT 扫描,涵盖了 L1 椎体。结果表明,L1 椎体的 T 评分与 DXA 测定的 L1-L4 椎体平均 T 评分呈强正相关(r=0.91,p<0.05)。在多变量分析中,4 个临床变量(年龄、体重、绝经状态、芳香化酶抑制剂暴露时间)和从 L1 椎体感兴趣区提取的 3 个放射组学特征(原始一阶_RootMeanSquared、小波.HH_glcm_InverseVariance 和小波.LL_glcm_MCC)被选入用于构建 L1 T 评分和骨骼健康的预测模型。与仅依赖临床数据、放射组学特征或 Hounsfield 单位的模型相比,结合临床和放射组学特征的预测模型显示出最大的调整 R 值(0.557)、灵敏度(83.6%)、特异性(74.2%)和总准确率(79.4%)。综上所述,该临床-放射组学预测模型可作为一种机会性筛查工具,基于 L1 椎体的非对比 CT 图像,用于识别有发生 CTIBL 高风险的乳腺癌幸存者,从而促进骨质疏松症的早期干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f58/10963549/b1be9ecea4bb/13246_2023_1360_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验