Department of Radiology, Mayo Clinic, Jacksonville, FL, 32224, USA.
Center for Augmented Intelligence, Mayo Clinic, Jacksonville, FL, 32224, USA.
Int J Comput Assist Radiol Surg. 2023 Dec;18(12):2261-2272. doi: 10.1007/s11548-023-02910-5. Epub 2023 May 23.
One or more vertebrae are sometimes excluded from dual-energy X-ray absorptiometry (DXA) analysis if the bone mineral density (BMD) T-score estimates are not consistent with the other lumbar vertebrae BMD T-score estimates. The goal of this study was to build a machine learning framework to identify which vertebrae would be excluded from DXA analysis based on the computed tomography (CT) attenuation of the vertebrae.
Retrospective review of 995 patients (69.0% female) aged 50 years or greater with CT scans of the abdomen/pelvis and DXA within 1 year of each other. Volumetric semi-automated segmentation of each vertebral body was performed using 3D-Slicer to obtain the CT attenuation of each vertebra. Radiomic features based on the CT attenuation of the lumbar vertebrae were created. The data were randomly split into training/validation (90%) and test datasets (10%). We used two multivariate machine learning models: a support vector machine (SVM) and a neural net (NN) to predict which vertebra(e) were excluded from DXA analysis.
L1, L2, L3, and L4 were excluded from DXA in 8.7% (87/995), 9.9% (99/995), 32.3% (321/995), and 42.6% (424/995) patients, respectively. The SVM had a higher area under the curve (AUC = 0.803) than the NN (AUC = 0.589) for predicting whether L1 would be excluded from DXA analysis (P = 0.015) in the test dataset. The SVM was better than the NN for predicting whether L2 (AUC = 0.757 compared to AUC = 0.478), L3 (AUC = 0.699 compared to AUC = 0.555), or L4 (AUC = 0.751 compared to AUC = 0.639) were excluded from DXA analysis.
Machine learning algorithms could be used to identify which lumbar vertebrae would be excluded from DXA analysis and should not be used for opportunistic CT screening analysis. The SVM was better than the NN for identifying which lumbar vertebra should not be used for opportunistic CT screening analysis.
如果双能 X 射线吸收法(DXA)分析的骨密度(BMD)T 评分估计与其他腰椎 BMD T 评分估计不一致,有时会排除一个或多个椎体进行分析。本研究的目的是建立一个机器学习框架,根据椎体的计算机断层扫描(CT)衰减来识别哪些椎体将被排除在 DXA 分析之外。
回顾性分析了 995 名年龄在 50 岁及以上的患者(69.0%为女性),这些患者在 1 年内均进行了腹部/骨盆 CT 扫描和 DXA 检查。使用 3D-Slicer 对每个椎体进行容积半自动分割,以获得每个椎体的 CT 衰减。创建基于腰椎 CT 衰减的放射组学特征。数据被随机分为训练/验证(90%)和测试数据集(10%)。我们使用了两种多变量机器学习模型:支持向量机(SVM)和神经网络(NN)来预测哪些椎体将被排除在 DXA 分析之外。
L1、L2、L3 和 L4 椎体在 8.7%(87/995)、9.9%(99/995)、32.3%(321/995)和 42.6%(424/995)的患者中被排除在 DXA 分析之外。在测试数据集中,SVM 预测 L1 是否会被排除在 DXA 分析之外的曲线下面积(AUC)高于 NN(AUC=0.589)(P=0.015)。SVM 预测 L2(AUC=0.757 与 AUC=0.478)、L3(AUC=0.699 与 AUC=0.555)或 L4(AUC=0.751 与 AUC=0.639)是否被排除在 DXA 分析之外的效果优于 NN。
机器学习算法可用于识别哪些腰椎椎体将被排除在 DXA 分析之外,不应用于机会性 CT 筛查分析。SVM 比 NN 更适合用于识别哪些腰椎椎体不应用于机会性 CT 筛查分析。