Moon Jun Hwan, Oh Eunsoo, Koo Thomas Myeongseok, Jeon Yoo Sang, Jang Young Jun, Fu Hong En, Ko Min Jun, Kim Young Keun
Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea.
Institute of Engineering Research, Korea University, Seoul, 02841, Republic of Korea.
Adv Mater. 2024 Apr;36(15):e2312214. doi: 10.1002/adma.202312214. Epub 2024 Jan 11.
Multiyolk-shell (mYS) nanostructures have garnered significant interest in various photocatalysis applications such as water splitting and waste treatment. Nonetheless, the complexity and rigorous conditions for the synthesis have hindered their widespread implementation. This study presents a one-step electrochemical strategy for synthesizing multiyolk-shell nanocoils (mYSNC), wherein multiple cores of noble metal nanoparticles, such as Au, are embedded within the hollow coil-shaped FePO shell structures, mitigating the challenges posed by conventional methods. By capitalizing on the dissimilar dissolution rates of bimetallic alloy nanocoils in an electrochemically programmed solution, nanocoils of different shapes and materials, including two variations of mYSNCs are successfully fabricated. The resulting Au-FePO mYSNCs exhibit exceptional photocatalytic performance for environmental remediation, demonstrating up to 99% degradation of methylene blue molecules within 50 min and 95% degradation of tetracycline within 100 min under ultraviolet-visible (UV-vis) light source. This remarkable performance can be attributed to the abundant electrochemical active sites, internal voids facilitating efficient light harvesting with coil morphology, amplified localized surface plasmon resonance (LSPR) at the plasmonic nanoparticle-semiconductor interface, and effective band engineering. The innovative approach utilizing bimetallic alloys demonstrates precise geometric control and design of intricate multicomponent hybrid composites, showcasing the potential for developing versatile hollow nanomaterials for catalytic applications.
多壳蛋黄(mYS)纳米结构在各种光催化应用中引起了广泛关注,如水分解和废物处理。尽管如此,合成过程的复杂性和严格条件阻碍了它们的广泛应用。本研究提出了一种一步电化学策略来合成多壳蛋黄纳米线圈(mYSNC),其中多个贵金属纳米颗粒(如Au)的核嵌入中空线圈状FePO壳结构中,缓解了传统方法带来的挑战。通过利用双金属合金纳米线圈在电化学编程溶液中的不同溶解速率,成功制备了不同形状和材料的纳米线圈,包括两种变体的mYSNC。所得的Au-FePO mYSNC在环境修复方面表现出卓越的光催化性能,在紫外-可见(UV-vis)光源下,50分钟内亚甲基蓝分子的降解率高达99%,100分钟内四环素的降解率为95%。这种卓越的性能可归因于丰富的电化学活性位点、内部空隙有利于通过线圈形态进行高效光捕获、等离子体纳米颗粒-半导体界面处放大的局部表面等离子体共振(LSPR)以及有效的能带工程。利用双金属合金的创新方法展示了对复杂多组分混合复合材料的精确几何控制和设计,展示了开发用于催化应用的多功能中空纳米材料的潜力。