Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, Nanchang, 330022, China.
Energy, Water, and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia.
Environ Pollut. 2024 Mar 1;344:123325. doi: 10.1016/j.envpol.2024.123325. Epub 2024 Jan 6.
In this work, a series of hydrogenated Fe-doped AgIO (FAI-x) catalysts are synthesized for photodegrading diverse azo dyes and antibiotics. Under the irradiation of natural sunlight with a light intensity of ∼60 mW/cm, the optimum FAI-10 exhibits a considerable rate constant for decomposing methyl orange (MO) of 0.067 min, about 7.4 times higher than that of AgIO (0.009 min), and 24.6% and 83.8% of MO can be decomposed over AgIO and FAI-10 after irradiation for 40 min. In the amplification photodegradation experiments with using 0.5 g catalyst and 400 mL MO dye solution (10 mg/L), FAI-10 possesses greatly higher photoreactivity to common semiconductors (ZnO, TiO, InO and BiMoO), and the photodegradation rates over FAI-10 are 92%. Particularly, the FAI-10 shows superior stability, the activity of which remains unaltered after 8 continuous cycles. Foreign ions and water bodies have slight effect on the activity of FAI-10, but the MO degradation rates are decreased by adjusting pH values, especially when pH = 11 because of the strong electrostatic repulsion between MO and FAI-10. FAI-10 can also effectively decompose another azo dye (rhodamine B (RhB)) and diverse antibiotics (sulflsoxazole (SOX), chlortetracycline hydrochloride (CTC), tetracycline hydrochloride (TC) and ofloxacin (OFX)). The activity enhancement mechanism of FAI-10 has been systemically investigated and is ascribed to the promoted photo-absorption, charge separation and transfer efficiency, and affinity of organic pollutants, owing to the synergistic effect of Fe doping and oxygen vacancy (Ov). The photocatalytic mechanisms and process for decomposing MO are verified and proposed based on radical trapping experiments and liquid chromatography-mass spectrometry (LC-MS). This work opens an avenue for the fabrication of effective photocatalysts toward water purification.
在这项工作中,合成了一系列氢化铁掺杂的 AgIO(FAI-x)催化剂,用于光降解多种偶氮染料和抗生素。在自然光强度约为 60 mW/cm 的照射下,最佳的 FAI-10 对分解甲基橙(MO)的速率常数为 0.067 min,比 AgIO(0.009 min)高约 7.4 倍,在光照 40 min 后,AgIO 和 FAI-10 可以分解 24.6%和 83.8%的 MO。在使用 0.5 g 催化剂和 400 mL MO 染料溶液(10 mg/L)的放大光降解实验中,FAI-10 对常见半导体(ZnO、TiO、InO 和 BiMoO)具有更高的光反应性,在 FAI-10 上的光降解率为 92%。特别是,FAI-10 表现出优异的稳定性,在 8 个连续循环后其活性保持不变。外源离子和水体对 FAI-10 的活性影响很小,但通过调节 pH 值会降低 MO 的降解速率,特别是当 pH=11 时,这是由于 MO 和 FAI-10 之间的强静电排斥。FAI-10 还可以有效地分解另一种偶氮染料(罗丹明 B(RhB))和多种抗生素(磺胺甲恶唑(SOX)、盐酸金霉素(CTC)、盐酸四环素(TC)和氧氟沙星(OFX))。系统研究了 FAI-10 的活性增强机制,归因于 Fe 掺杂和氧空位(Ov)的协同作用,促进了光吸收、电荷分离和转移效率以及有机污染物的亲和力。根据自由基捕获实验和液相色谱-质谱(LC-MS)验证并提出了分解 MO 的光催化机制和过程。这项工作为制备用于水净化的有效光催化剂开辟了一条途径。