Chen Jiaqi, Xu Bin, Ma Hai, Qi Ruijuan, Bai Wei, Yue Fangyu, Yang Pingxiong, Chen Ye, Chu Junhao, Sun Lin
Key Laboratory of Polar Materials and Devices (MOE), Department of Electronics, East China Normal University, Shanghai, 200241, P. R. China.
Institute of Optoelectronics, Fudan University, Shanghai, 200438, P. R. China.
Small. 2024 Jun;20(24):e2307347. doi: 10.1002/smll.202307347. Epub 2024 Jan 8.
CuZnSn(S,Se) (CZTSSe) has attracted great interest in thin-film solar cells due to its excellent photoelectric performance in past decades, and recently is gradually expanding to the field of photodetectors. Here, the CZTSSe self-powered photodetector is prepared by using traditional photovoltaic device structure. Under zero bias, it exhibits the excellent performance with a maximum responsivity of 0.77 A W, a high detectivity of 8.78 × 10 Jones, and a wide linear dynamic range of 103 dB. Very fast response speed with the rise/decay times of 0.576/1.792 µs, and ultra-high switching ratio of 3.54 × 10 are obtained. Comprehensive electrical and microstructure characterizations confirm that element diffusion among ITO, CdS, and CZTSSe layers not only optimizes band alignment of CdS/CZTSSe, but also suppresses the formation of interface defects. Such a suppression of interface defects and spike-like band alignment significantly inhibit carrier nonradiative recombination at interface and promote carrier transport capability. The low trap density in CZTSSe and low back contact barrier of CZTSSe/Mo could be responsible for the very fast response time of photodetector. This work definitely provides guidance for designing a high performance self-powered photodetector with high photoresponse, high switching ratio, fast response speed, and broad linear dynamic range.
在过去几十年中,铜锌锡硫硒(CZTSSe)因其优异的光电性能在薄膜太阳能电池领域引起了极大关注,并且最近正逐渐扩展到光电探测器领域。在此,采用传统光伏器件结构制备了CZTSSe自供电光电探测器。在零偏压下,它表现出优异的性能,最大响应度为0.77 A/W,高探测率为8.78×10琼斯,宽线性动态范围为103 dB。获得了非常快的响应速度,上升/下降时间为0.576/1.792 μs,以及3.54×10的超高开关比。全面的电学和微观结构表征证实,氧化铟锡(ITO)、硫化镉(CdS)和CZTSSe层之间的元素扩散不仅优化了CdS/CZTSSe的能带排列,而且抑制了界面缺陷的形成。这种对界面缺陷的抑制和尖峰状能带排列显著抑制了界面处载流子的非辐射复合,并提高了载流子传输能力。CZTSSe中的低陷阱密度和CZTSSe/钼(Mo)的低背接触势垒可能是光电探测器响应时间非常快的原因。这项工作无疑为设计具有高光响应、高开关比、快速响应速度和宽线性动态范围的高性能自供电光电探测器提供了指导。