Suppr超能文献

数据综合策略对颅缝早闭分类的影响。

Impact of data synthesis strategies for the classification of craniosynostosis.

作者信息

Schaufelberger Matthias, Kühle Reinald Peter, Wachter Andreas, Weichel Frederic, Hagen Niclas, Ringwald Friedemann, Eisenmann Urs, Hoffmann Jürgen, Engel Michael, Freudlsperger Christian, Nahm Werner

机构信息

Institute of Biomedical Engineering (IBT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.

Department of Oral, Dental and Maxillofacial Diseases, Heidelberg University Hospital, Heidelberg, Germany.

出版信息

Front Med Technol. 2023 Dec 13;5:1254690. doi: 10.3389/fmedt.2023.1254690. eCollection 2023.

Abstract

INTRODUCTION

Photogrammetric surface scans provide a radiation-free option to assess and classify craniosynostosis. Due to the low prevalence of craniosynostosis and high patient restrictions, clinical data are rare. Synthetic data could support or even replace clinical data for the classification of craniosynostosis, but this has never been studied systematically.

METHODS

We tested the combinations of three different synthetic data sources: a statistical shape model (SSM), a generative adversarial network (GAN), and image-based principal component analysis for a convolutional neural network (CNN)-based classification of craniosynostosis. The CNN is trained only on synthetic data but is validated and tested on clinical data.

RESULTS

The combination of an SSM and a GAN achieved an accuracy of 0.960 and an F1 score of 0.928 on the unseen test set. The difference to training on clinical data was smaller than 0.01. Including a second image modality improved classification performance for all data sources.

CONCLUSIONS

Without a single clinical training sample, a CNN was able to classify head deformities with similar accuracy as if it was trained on clinical data. Using multiple data sources was key for a good classification based on synthetic data alone. Synthetic data might play an important future role in the assessment of craniosynostosis.

摘要

引言

摄影测量表面扫描为评估和分类颅缝早闭提供了一种无辐射的选择。由于颅缝早闭的患病率低且患者限制多,临床数据很少。合成数据可以支持甚至取代用于颅缝早闭分类的临床数据,但这从未得到系统研究。

方法

我们测试了三种不同合成数据源的组合:统计形状模型(SSM)、生成对抗网络(GAN)以及用于基于卷积神经网络(CNN)的颅缝早闭分类的基于图像的主成分分析。该CNN仅在合成数据上进行训练,但在临床数据上进行验证和测试。

结果

在未见测试集上,SSM和GAN的组合实现了0.960的准确率和0.928的F1分数。与在临床数据上训练的差异小于0.01。纳入第二种图像模态提高了所有数据源的分类性能。

结论

在没有单个临床训练样本的情况下,CNN能够以与在临床数据上训练时相似的准确率对头畸形进行分类。使用多个数据源是仅基于合成数据进行良好分类的关键。合成数据可能在颅缝早闭的评估中发挥重要的未来作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/273e/10773901/b13c39eb39ef/fmedt-05-1254690-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验