Suppr超能文献

一种用于运动损伤风险预测的新方法:基于时间序列图像编码和深度学习。

A novel approach for sports injury risk prediction: based on time-series image encoding and deep learning.

作者信息

Ye Xiaohong, Huang Yuanqi, Bai Zhanshuang, Wang Yukun

机构信息

Chengyi College, Jimei University, Xiamen, China.

School of Physical Education and Sport Science, Fujian Normal University, Fuzhou, China.

出版信息

Front Physiol. 2023 Dec 18;14:1174525. doi: 10.3389/fphys.2023.1174525. eCollection 2023.

Abstract

The rapid development of big data technology and artificial intelligence has provided a new perspective on sports injury prevention. Although data-driven algorithms have achieved some valuable results in the field of sports injury risk assessment, the lack of sufficient generalization of models and the inability to automate feature extraction have made it challenging to deploy research results in the real world. Therefore, this study attempts to build an injury risk prediction model using a combination of time-series image encoding and deep learning algorithms to address this issue better. This study used the time-series image encoding approach for feature construction to represent relationships between values at different moments, including Gramian Angular Summation Field (GASF), Gramian Angular Difference Field (GADF), Markov Transition Field (MTF), and Recurrence Plot (RP). Deep Convolutional Auto-Encoder (DCAE) learned the image-encoded data for representation to obtain features with good discrimination, and the classifier was performed using Deep Neural Network (DNN). The results from five repeated experiments show that the GASF-DCAE-DNN model is overall better in the training (AUC: 0.985 ± 0.001, Gmean: 0.930 ± 0.007, Sensitivity: 0.997 ± 0.003, Specificity: 0.868 ± 0.013) and test sets (AUC: 0.891 ± 0.026, Gmean: 0.830 ± 0.027, Sensitivity: 0.816 ± 0.039, Specificity: 0.845 ± 0.022), with good discriminative power, robustness, and generalization ability. Compared with the best model reported in the literature, the AUC, Gmean, Sensitivity, and Specificity of the GASF-DCAE-DNN model were higher by 23.9%, 27.5%, 39.7%, and 16.2%, respectively, which confirmed the validity and practicability of the model in injury risk prediction. In addition, differences in injury risk patterns between the training and test sets were identified through shapley additivity interpretation. It was also found that the training volume was an essential factor that affected injury risk prediction. The model proposed in this study provides a powerful injury risk prediction tool for future sports injury prevention practice.

摘要

大数据技术和人工智能的快速发展为运动损伤预防提供了新视角。尽管数据驱动算法在运动损伤风险评估领域取得了一些有价值的成果,但模型缺乏足够的泛化能力以及无法自动提取特征,使得在现实世界中部署研究成果具有挑战性。因此,本研究试图结合时间序列图像编码和深度学习算法构建一个损伤风险预测模型,以更好地解决这一问题。本研究采用时间序列图像编码方法进行特征构建,以表示不同时刻值之间的关系,包括格拉姆角和场(GASF)、格拉姆角差分场(GADF)、马尔可夫转移场(MTF)和递归图(RP)。深度卷积自动编码器(DCAE)学习图像编码数据以进行表示,从而获得具有良好区分度的特征,并使用深度神经网络(DNN)进行分类。五次重复实验的结果表明,GASF-DCAE-DNN模型在训练集(AUC:0.985±0.001,几何均值:0.930±0.007,灵敏度:0.997±0.003,特异性:0.868±0.013)和测试集(AUC:0.891±0.026,几何均值:0.830±0.027,灵敏度:0.816±0.039,特异性:0.845±0.022)中总体表现更好,具有良好的区分能力、稳健性和泛化能力。与文献中报道的最佳模型相比,GASF-DCAE-DNN模型的AUC、几何均值、灵敏度和特异性分别高出23.9%、27.5%、39.7%和16.2%,这证实了该模型在损伤风险预测中的有效性和实用性。此外,通过夏普利加性解释确定了训练集和测试集之间损伤风险模式的差异。还发现训练量是影响损伤风险预测的一个重要因素。本研究提出的模型为未来的运动损伤预防实践提供了一个强大的损伤风险预测工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d0cb/10773721/0f5429bae85f/fphys-14-1174525-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验