Suppr超能文献

无偏表型和基因型匹配最大限度地提高了基因发现和诊断的效果。

Unbiased phenotype and genotype matching maximizes gene discovery and diagnostic yield.

机构信息

Department of Genetics, Hadassah Medical Center, Jerusalem, Israel.

Department of Genetics, Hadassah Medical Center, Jerusalem, Israel; Faculty of Medicine, Hebrew University of Jerusalem, Israel.

出版信息

Genet Med. 2024 Apr;26(4):101068. doi: 10.1016/j.gim.2024.101068. Epub 2024 Jan 6.

Abstract

PURPOSE

Widespread application of next-generation sequencing, combined with data exchange platforms, has provided molecular diagnoses for countless families. To maximize diagnostic yield, we implemented an unbiased semi-automated genematching algorithm based on genotype and phenotype matching.

METHODS

Rare homozygous variants identified in 2 or more affected individuals, but not in healthy individuals, were extracted from our local database of ∼12,000 exomes. Phenotype similarity scores (PSS), based on human phenotype ontology terms, were assigned to each pair of individuals matched at the genotype level using HPOsim.

RESULTS

33,792 genotype-matched pairs were discovered, representing variants in 7567 unique genes. There was an enrichment of PSS ≥0.1 among pathogenic/likely pathogenic variant-level pairs (94.3% in pathogenic/likely pathogenic variant-level matches vs 34.75% in all matches). We highlighted founder or region-specific variants as an internal positive control and proceeded to identify candidate disease genes. Variant-level matches were particularly helpful in cases involving inframe indels and splice region variants beyond the canonical splice sites, which may otherwise have been disregarded, allowing for detection of candidate disease genes, such as KAT2A, RPAIN, and LAMP3.

CONCLUSION

Semi-automated genotype matching combined with PSS is a powerful tool to resolve variants of uncertain significance and to identify candidate disease genes.

摘要

目的

下一代测序技术的广泛应用,结合数据交换平台,为数以千计的家庭提供了分子诊断。为了最大限度地提高诊断效果,我们实施了一种基于基因型和表型匹配的无偏半自动基因匹配算法。

方法

从我们约 12000 个外显子组的本地数据库中提取出在 2 个或更多受影响个体中发现的罕见纯合变体,但在健康个体中未发现。使用 HPOsim 为在基因型水平上匹配的每对个体分配基于人类表型本体论术语的表型相似性评分(PSS)。

结果

发现了 33792 对基因型匹配的个体,代表 7567 个独特基因中的变体。在致病性/可能致病性变异水平匹配中,PSS≥0.1 的比例较高(致病性/可能致病性变异水平匹配中的 94.3%,而所有匹配中的 34.75%)。我们将创始人或区域特异性变体作为内部阳性对照,并继续确定候选疾病基因。变体水平匹配在涉及移码缺失和剪接区域变异(超出经典剪接位点)的情况下特别有用,否则这些情况可能会被忽略,从而能够检测候选疾病基因,如 KAT2A、RPAIN 和 LAMP3。

结论

半自动基因型匹配结合 PSS 是解决不确定意义的变体和识别候选疾病基因的有力工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验