Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan.
The Graduate Institute for Advanced Studies, SOKENDAI, Hayama, Kanagawa 240-0193, Japan.
Nano Lett. 2024 Jan 24;24(3):836-843. doi: 10.1021/acs.nanolett.3c03479. Epub 2024 Jan 9.
Tip-enhanced vibrational spectroscopy has advanced to routinely attain nanoscale spatial resolution, with tip-enhanced Raman spectroscopy even achieving atomic-scale and submolecular sensitivity. Tip-enhanced infrared spectroscopy techniques, such as nano-FTIR and AFM-IR spectroscopy, have also enabled the nanoscale chemical analysis of molecular monolayers, inorganic nanoparticles, and protein complexes. However, fundamental limits of infrared nanospectroscopy in terms of spatial resolution and sensitivity have remained elusive, calling for a quantitative understanding of the near-field interactions in infrared nanocavities. Here, we demonstrate the application of nano-FTIR spectroscopy to probe the amide-I vibration of a single protein consisting of ∼500 amino acid residues. Detection with higher tip tapping demodulation harmonics up to the seventh order leads to pronounced enhancement in the peak amplitude of the vibrational resonance, originating from sub-tip-radius geometrical effects beyond dipole approximations. This quantitative characterization of single-nanometer near-field interactions opens the path toward employing infrared vibrational spectroscopy at the subnanoscale and single-molecule levels.
尖端增强振动光谱学已经发展到能够常规地实现纳米级空间分辨率,而尖端增强拉曼光谱学甚至实现了原子级和亚分子级的灵敏度。尖端增强红外光谱技术,如纳米傅里叶变换红外光谱学(nano-FTIR)和原子力显微镜红外光谱学(AFM-IR 光谱学),也已经能够对分子单层、无机纳米粒子和蛋白质复合物进行纳米级化学分析。然而,红外纳米光谱学在空间分辨率和灵敏度方面的基本限制仍然难以捉摸,需要对红外纳米腔中的近场相互作用进行定量理解。在这里,我们展示了 nano-FTIR 光谱学在探测由约 500 个氨基酸残基组成的单个蛋白质的酰胺-I 振动方面的应用。通过高达第七阶的更高尖端敲击解调谐波进行检测,导致振动共振的峰值幅度显著增强,这源于超越偶极近似的亚尖端半径几何效应。这种对单纳米级近场相互作用的定量描述为在亚纳米级和单分子水平上应用红外振动光谱学开辟了道路。