Shi Jia H, Poworoznek Carlie J, Parham Rebecca L, Kolozsvari Katherine R, Olson Nicole E, Xiao Yao, Lei Ziying, Birbeck Johnna A, Jacquemin Stephen J, Westrick Judy A, Ault Andrew P
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States.
Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States.
J Phys Chem A. 2025 Feb 6;129(5):1429-1440. doi: 10.1021/acs.jpca.4c07848. Epub 2025 Jan 28.
Aerosols containing biological material (i.e., bioaerosols) impact public health by transporting toxins, allergens, and diseases and impact the climate by nucleating ice crystals and cloud droplets. Single particle characterization of primary biological aerosol particles (PBAPs) is essential, as individual particle physicochemical properties determine their impacts. Vibrational spectroscopies, such as infrared (IR) or Raman spectroscopy, provide detailed information about the biological components within atmospheric aerosols but these techniques have traditionally been limited due to the diffraction limit of IR radiation (particles >10 μm) and fluorescence of bioaerosol components overwhelming the Raman signal. Herein, we use photothermal infrared spectroscopy (PTIR) to overcome these limitations and characterize individual PBAPs down to 0.18 μm. Both optical-PTIR (O-PTIR) and atomic force microscopy-PTIR (AFM-PTIR) were used to characterize bioaerosol particles generated from a cyanobacterial harmful algal bloom (cHAB) dominated by . PTIR spectra contained modes consistent with traditional Fourier transform infrared (FTIR) spectra for biological species, including amide I (1630-1700 cm) and amide II (1530-1560 cm). The fractions of particles containing biological materials were greater in supermicron particles (1.8-3.2 μm) than in submicron particles (0.18-0.32 and 0.56-1.0 μm) for aerosolized cHAB water. These results demonstrate the potential of both O-PTIR and AFM-PTIR for studying a range of bioaerosols with vibrational spectroscopy.
含有生物物质的气溶胶(即生物气溶胶)通过传播毒素、过敏原和疾病影响公众健康,并通过使冰晶和云滴成核影响气候。对初级生物气溶胶颗粒(PBAPs)进行单颗粒表征至关重要,因为单个颗粒的物理化学性质决定了它们的影响。振动光谱技术,如红外(IR)或拉曼光谱,可提供有关大气气溶胶中生物成分的详细信息,但由于红外辐射的衍射极限(颗粒>10μm)以及生物气溶胶成分的荧光掩盖了拉曼信号,这些技术传统上受到限制。在此,我们使用光热红外光谱(PTIR)来克服这些限制,并对低至0.18μm的单个PBAPs进行表征。光学-PTIR(O-PTIR)和原子力显微镜-PTIR(AFM-PTIR)都被用于表征由蓝藻有害藻华(cHAB)产生的生物气溶胶颗粒。PTIR光谱包含与生物物种的传统傅里叶变换红外(FTIR)光谱一致的模式,包括酰胺I(1630-1700cm)和酰胺II(1530-1560cm)。对于雾化的cHAB水,含有生物材料的颗粒在超微米颗粒(1.8-3.2μm)中的比例高于亚微米颗粒(0.18-0.32和0.56-1.0μm)。这些结果证明了O-PTIR和AFM-PTIR利用振动光谱研究一系列生物气溶胶的潜力。