Suppr超能文献

基于深度学习增强模型的分流量储备预测的综合方法。

A comprehensive approach to prediction of fractional flow reserve from deep-learning-augmented model.

机构信息

Department of Biomedical Engineering, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, China.

Cardiovascular Department, Peking University People's Hospital, Beijing, China.

出版信息

Comput Biol Med. 2024 Feb;169:107967. doi: 10.1016/j.compbiomed.2024.107967. Epub 2024 Jan 3.

Abstract

The underuse of invasive fractional flow reserve (FFR) in clinical practice has motivated research towards non-invasive prediction of FFR. Although the non-invasive derivation of FFR (FFR) using computational fluid dynamics (CFD) principles has become a common practice, its clinical application has been limited due to the considerable time required for computation of resulting changes in haemodynamic conditions. An alternative to CFD technology is incorporating a neural network into the computational process to reduce the time necessary for running an effective model. In this study we propose a cascade of data-driven and physic-based neural networks (DP-NN) for predicting FFR (DL-FFR). The first network of cascade network DP-NN includes geometric features, and the second network includes physical features. We compare the differences between data-driven neural network (D-NN) and DP-NN for predicting FFR. The training and testing datasets were obtained by solving the three-dimensional incompressible Navier-Stokes equations. Coronary flow and geometric features were used as inputs to train D-NN. In DP-NN the training process involves first training a D-NN to output resting ΔP as one input feature to the DP-NN. Secondly, the physics-based microcirculatory resistance as another input feature to the DP-NN. Using clinically measured FFR as the "gold standard", we validated the computational accuracy of DL-FFR in 77 patients. Compared to D-NN, DP-NN improved the prediction of ΔP (R = 0.87 vs. R = 0.92). Statistical analysis demonstrated that the diagnostic accuracy of DL-FFR was not inferior to FFR (85.71 % vs. 88.3 %) and the computational time was reduced by a factor of approximately 3000 (4.26 s vs. 3.5 h). DP-NN represents a near real-time, interpretable, and highly accurate deep-learning network, which contributes to the development of high-performance computational methods for haemodynamics. We anticipate that DP-NN will enable near real-time prediction of DL-FFR in personalized narrow blood vessels and provide guidance for cardiovascular disease treatments.

摘要

在临床实践中,侵入性分数流量储备(FFR)的使用不足促使人们对 FFR 的非侵入性预测进行研究。尽管使用计算流体动力学(CFD)原理从非侵入性方法推导 FFR(FFR)已成为一种常见做法,但由于计算血流动力学条件变化所需的时间相当长,其临床应用受到限制。CFD 技术的替代方法是在计算过程中纳入神经网络,以减少运行有效模型所需的时间。在这项研究中,我们提出了一种用于预测 FFR(DL-FFR)的基于数据驱动和基于物理的神经网络(DP-NN)级联。级联网络 DP-NN 的第一个网络包括几何特征,第二个网络包括物理特征。我们比较了用于预测 FFR 的基于数据的神经网络(D-NN)和 DP-NN 之间的差异。通过求解三维不可压缩纳维-斯托克斯方程获得训练和测试数据集。冠状动脉血流和几何特征被用作输入来训练 D-NN。在 DP-NN 中,训练过程包括首先训练 D-NN 以输出静息 ΔP 作为 DP-NN 的一个输入特征。其次,将基于物理的微循环阻力作为 DP-NN 的另一个输入特征。使用临床上测量的 FFR 作为“金标准”,我们在 77 名患者中验证了 DL-FFR 的计算准确性。与 D-NN 相比,DP-NN 提高了 ΔP 的预测精度(R=0.87 与 R=0.92)。统计分析表明,DL-FFR 的诊断准确性不逊于 FFR(85.71%与 88.3%),并且计算时间减少了约 3000 倍(4.26s 与 3.5h)。DP-NN 代表了一种接近实时、可解释和高度准确的深度学习网络,为血液动力学的高性能计算方法的发展做出了贡献。我们预计 DP-NN 将能够实现个性化狭窄血管中 DL-FFR 的接近实时预测,并为心血管疾病治疗提供指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验