State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, China.
Adv Sci (Weinh). 2024 Mar;11(11):e2306911. doi: 10.1002/advs.202306911. Epub 2024 Jan 9.
Metal-organic frameworks (MOF) derived nitrogen-doped carbon-supported monodisperse Fe (Fe-N-C) catalysts are intensively studied, but great challenges remain in understanding the relationship between the coordination structure and the performance of Fe-N-C nanozymes. Herein, a novel nanocluster ligand-bridging strategy is proposed for constructing Fe-S N structures with axially coordinated S and Au nanoclusters on ZIF-8 derived Fe-N-C (labeled Au /Fe-S N -C). The axial Au nanoclusters facilitate electron transfer to Fe active sites, utilizing the bridging ligand S as a medium, thereby enhancing the oxygen adsorption capacity of composite nanozymes. Compared to Fe-N-C, Au /Fe-S N -C exhibits high oxidase-like specificity and activity, and holds great potential for detecting acetylcholinesterase activity with a detection limit of 5.1 µU mL , surpassing most reported nanozymes.
金属-有机骨架(MOF)衍生的氮掺杂碳负载的单分散铁(Fe-N-C)催化剂受到了广泛的研究,但在理解 Fe-N-C 纳米酶的配位结构与性能之间的关系方面仍然存在巨大的挑战。在此,提出了一种新的纳米团簇配体桥联策略,用于构建具有轴向配位 S 和 Au 纳米团簇的 Fe-SN 结构,该结构负载在 ZIF-8 衍生的 Fe-N-C 上(标记为 Au/Fe-SN-C)。轴向 Au 纳米团簇通过桥联配体 S 促进电子转移到 Fe 活性位点,从而增强了复合纳米酶的氧吸附能力。与 Fe-N-C 相比,Au/Fe-SN-C 表现出高的过氧化物酶样特异性和活性,并且在检测乙酰胆碱酯酶活性方面具有很大的潜力,检测限低至 5.1µU mL-1,超过了大多数报道的纳米酶。