Department of Clinical Pharmacy, The First Hospital of Hebei Medical University, Shijiazhuang, China.
The Technology Innovation Center for Artificial Intelligence in Clinical Pharmacy of Hebei Province, The First Hospital of Hebei Medical University, Shijiazhuang, China.
Expert Rev Clin Pharmacol. 2024 Jan-Jun;17(2):177-187. doi: 10.1080/17512433.2024.2304009. Epub 2024 Jan 29.
Variability exists in sertraline pharmacokinetic parameters in individuals, especially obvious in adolescents. We aimed to establish an individualized dosing model of sertraline for adolescents with depression based on artificial intelligence (AI) techniques.
Data were collected from 258 adolescent patients treated at the First Hospital of Hebei Medical University between December 2019 to July 2022. Nine different algorithms were used for modeling to compare the prediction abilities on sertraline daily dose, including XGBoost, LGBM, CatBoost, GBDT, SVM, ANN, TabNet, KNN, and DT. Performance of four dose subgroups (50 mg, 100 mg, 150 mg, and 200 mg) were analyzed.
CatBoost was chosen to establish the individualized medication model with the best performance. Six important variables were found to be correlated with sertraline dose, including plasma concentration, PLT, MPV, GL, A/G, and LDH. The ROC curve and confusion matrix exhibited the good prediction performance of CatBoost model in four dose subgroups (the AUC of 50 mg, 100 mg, 150 mg, and 200 mg were 0.93, 0.81, 0.93, and 0.93, respectively).
The AI-based dose prediction model of sertraline in adolescents with depression had a good prediction ability, which provides guidance for clinicians to propose the optimal medication regimen.
个体间舍曲林药代动力学参数存在变异性,在青少年中尤为明显。我们旨在基于人工智能(AI)技术为青少年抑郁症患者建立个体化舍曲林剂量模型。
数据来自于 2019 年 12 月至 2022 年 7 月在河北医科大学第一医院接受治疗的 258 例青少年患者。使用 9 种不同的算法(XGBoost、LGBM、CatBoost、GBDT、SVM、ANN、TabNet、KNN 和 DT)进行建模,以比较对舍曲林日剂量的预测能力。分析了四个剂量亚组(50mg、100mg、150mg 和 200mg)的性能。
CatBoost 被选为具有最佳性能的个体化用药模型。发现 6 个重要变量与舍曲林剂量相关,包括血浆浓度、PLT、MPV、GL、A/G 和 LDH。ROC 曲线和混淆矩阵显示了 CatBoost 模型在四个剂量亚组中的良好预测性能(50mg、100mg、150mg 和 200mg 的 AUC 分别为 0.93、0.81、0.93 和 0.93)。
基于 AI 的青少年抑郁症患者舍曲林剂量预测模型具有良好的预测能力,为临床医生提出最佳治疗方案提供了指导。