Allan Lynet, Mulwa Winfred M, Mapasha R E, Mwabora Julius M, Musembi Robinson J
Department of Physics, Faculty of Science and Technology, University of Nairobi, P.O.Box 30197-00100, Nairobi, Kenya.
Department of Physics, Egerton University, P.O Box 536-20115, Egerton, Kenya.
J Mol Model. 2024 Jan 10;30(2):32. doi: 10.1007/s00894-023-05823-x.
The study investigates the impact of Hubbard U correction and spin-orbit coupling (SOC) on the structural, mechanical, electronic, and optical properties of and compounds. The research is motivated by the potential applications of these materials in photovoltaics, with a focus on understanding their properties for such use. The ductility, ionicity, and mechanical stability of both compounds at zero pressure are assessed, indicating their potential as resilient materials. Also, the compounds display high refractive indices and absorption coefficients, indicating their suitability for solar harvesting applications. The predicted bandgaps align primarily with the UV-Vis areas of the electromagnetic spectrum, highlighting their potential in this domain.
Computational techniques employed in this study are density functional theory (DFT) with and without spin-orbit coupling, as well as DFT+U methods, implemented using the Quantum ESPRESSO (QE) package. The study adopts the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional, while employing a plane-wave basis set with an energy cutoff of 50 Ry for wavefunctions and 500 Ry for charge density.
该研究调查了哈伯德U修正和自旋轨道耦合(SOC)对[具体化合物1]和[具体化合物2]化合物的结构、力学、电子和光学性质的影响。这项研究的动机是这些材料在光伏领域的潜在应用,重点是了解它们在此类应用中的性质。评估了两种化合物在零压力下的延展性、离子性和机械稳定性,表明它们作为弹性材料的潜力。此外,这些化合物显示出高折射率和吸收系数,表明它们适用于太阳能收集应用。预测的带隙主要与电磁光谱的紫外-可见区域一致,突出了它们在该领域的潜力。
本研究采用的计算技术是有无自旋轨道耦合的密度泛函理论(DFT)以及DFT+U方法,使用量子 espresso(QE)软件包实现。该研究采用佩德韦-伯克-恩泽霍夫(PBE)交换相关泛函,同时使用平面波基组,波函数的能量截止为50 Ry,电荷密度的能量截止为500 Ry。