Suppr超能文献

CRESPR:用于提高剪枝性能和模型可解释性的 DNN 模块化稀疏化。

CRESPR: Modular sparsification of DNNs to improve pruning performance and model interpretability.

机构信息

University of Massachusetts Boston, United States of America.

University of Massachusetts Boston, United States of America.

出版信息

Neural Netw. 2024 Apr;172:106067. doi: 10.1016/j.neunet.2023.12.021. Epub 2023 Dec 17.

Abstract

Modern DNNs often include a huge number of parameters that are expensive for both computation and memory. Pruning can significantly reduce model complexity and lessen resource demands, and less complex models can also be easier to explain and interpret. In this paper, we propose a novel pruning algorithm, Cluster-Restricted Extreme Sparsity Pruning of Redundancy (CRESPR), to prune a neural network into modular units and achieve better pruning efficiency. With the Hessian matrix, we provide an analytic explanation of why modular structures in a sparse DNN can better maintain performance, especially at an extreme high pruning ratio. In CRESPR, each modular unit contains mostly internal connections, which clearly shows how subgroups of input features are processed through a DNN and eventually contribute to classification decisions. Such process-level revealing of internal working mechanisms undoubtedly leads to better interpretability of a black-box DNN model. Extensive experiments were conducted with multiple DNN architectures and datasets, and CRESPR achieves higher pruning performance than current state-of-the-art methods at high and extremely high pruning ratios. Additionally, we show how CRESPR improves model interpretability through a concrete example.

摘要

现代 DNN 通常包含大量的参数,这些参数在计算和内存方面都非常昂贵。剪枝可以显著降低模型的复杂度和资源需求,并且更简单的模型也更容易解释和理解。在本文中,我们提出了一种新的剪枝算法,即聚类约束的冗余极端稀疏剪枝(CRESPR),将神经网络剪枝为模块化单元,以实现更好的剪枝效率。通过 Hessian 矩阵,我们提供了一个解析解释,说明为什么稀疏 DNN 中的模块化结构可以更好地保持性能,特别是在极高的剪枝率下。在 CRESPR 中,每个模块化单元主要包含内部连接,这清楚地展示了输入特征的子组如何通过 DNN 进行处理,并最终有助于分类决策。这种对内部工作机制的过程级揭示无疑会提高黑盒 DNN 模型的可解释性。我们使用多种 DNN 架构和数据集进行了广泛的实验,CRESPR 在高和极高剪枝率下的剪枝性能优于当前最先进的方法。此外,我们还通过一个具体的例子展示了 CRESPR 如何提高模型的可解释性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验