Suppr超能文献

以人本设计为基础,开发嵌入式机器学习模型,协助护士进行数据标注:人机交互人工智能(H2AI)。

Application of a human-centered design for embedded machine learning model to develop data labeling software with nurses: Human-to-Artificial Intelligence (H2AI).

机构信息

KaviGlobal, 1250 Grove St, Suite 300, Barrington, IL, USA.

Ann & Robert H. Lurie Children's Hospital of Chicago, 255 E. Chicago Ave, Box 101, Chicago, IL, USA.

出版信息

Int J Med Inform. 2024 Mar;183:105337. doi: 10.1016/j.ijmedinf.2023.105337. Epub 2024 Jan 6.

Abstract

BACKGROUND

Nurses are essential for assessing and managing acute pain in hospitalized patients, especially those who are unable to self-report pain. Given their role and subject matter expertise (SME), nurses are also essential for the design and development of a supervised machine learning (ML) model for pain detection and clinical decision support software (CDSS) in a pain recognition automated monitoring system (PRAMS). Our first step for developing PRAMS with nurses was to create SME-friendly data labeling software.

PURPOSE

To develop an intuitive and efficient data labeling software solution, Human-to-Artificial Intelligence (H2AI).

METHOD

The Human-centered Design for Embedded Machine Learning Solutions (HCDe-MLS) model was used to engage nurses. In this paper, HCDe-MLS will be explained using H2AI and PRAMS as illustrative cases.

FINDINGS

Using HCDe-MLS, H2AI was developed and facilitated labeling of 139 videos (mean = 29.83 min) with 3189 images labeled (mean = 75 s) by 6 nurses. OpenCV was used for video-to-image pre-processing; and MobileFaceNet was used for default landmark placement on images. H2AI randomly assigned videos to nurses for data labeling, tracked labelers' inter-rater reliability, and stored labeled data to train ML models.

CONCLUSIONS

Nurses' engagement in CDSS development was critical for ensuring the end-product addressed nurses' priorities, reflected nurses' cognitive and decision-making processes, and garnered nurses' trust for technology adoption.

摘要

背景

护士在评估和管理住院患者的急性疼痛方面至关重要,尤其是那些无法自我报告疼痛的患者。鉴于他们的角色和专业知识(SME),护士也是设计和开发疼痛检测和临床决策支持软件(CDSS)的监督机器学习(ML)模型以及疼痛识别自动监测系统(PRAMS)所必需的。我们与护士一起开发 PRAMS 的第一步是创建便于 SME 使用的数据标记软件。

目的

开发直观且高效的数据标记软件解决方案,即人机交互人工智能(H2AI)。

方法

采用以人为中心的嵌入式机器学习解决方案设计(HCDe-MLS)模型来与护士合作。在本文中,将使用 H2AI 和 PRAMS 来说明 HCDe-MLS。

发现

使用 HCDe-MLS,开发了 H2AI,并由 6 名护士完成了 139 个视频(平均 29.83 分钟)的标记工作,共标记了 3189 张图像(平均 75 秒)。OpenCV 用于视频到图像的预处理;MobileFaceNet 用于图像上的默认地标定位。H2AI 随机将视频分配给护士进行数据标记,跟踪标记员的组内信度,并存储标记的数据以训练 ML 模型。

结论

护士参与 CDSS 开发对于确保最终产品满足护士的优先事项、反映护士的认知和决策过程以及获得护士对技术采用的信任至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验