Song Qingfei, Zhang Xingyu, Miao Zekai, Meng Qingyong
Department of Chemistry, Northwestern Polytechnical University, West Youyi Road 127, Xi'an 710072, China.
J Chem Theory Comput. 2024 Jan 23;20(2):597-613. doi: 10.1021/acs.jctc.3c01090. Epub 2024 Jan 10.
In this work, a systematic construction framework on a mode-combination Hamiltonian operator of a typical polyatomic reaction, OH + HO → O + HO, is developed. First, a set of Jacobi coordinates are employed to construct the kinetic energy operator (KEO) through the polyspherical approach ( 2009, 484, 169). Second, due to the multiconfigurational electronic structure of this system, a non-adiabatic potential energy surface (PES) is constructed where the first singlet and triplet states are involved with spin-orbital coupling. To improve the training database, the training set of random energy data was optimized through a popular iterative optimization approach with extensive trajectories. Here, we propose an automatic trajectory method, instead of the classical trajectory on a crude PES, where the gradients are directly computed by the present calculations. Third, on the basis of the training set, the potential function is directly constructed in the canonical polyadic decomposition (CPD) form ( 2021, 17, 2702-2713) which is helpful in propagating the nuclear wave function under the grid-based representation. To do this, the Gaussian process regression (GPR) approach for building the CPD form, called the CPD-GPR method ( 2022, 13, 11128-11135) is adopted where we further revise CPD-GPR by introducing the mode-combination (mc) scheme leading to the present CPD-mc-GPR approach. Constructing the full-dimension non-adiabatic Hamiltonian operator with mode combination, as test calculations, the nuclear wave function is propagated to preliminarily compute the reactive probability of OH + HO → O + HO where the reactants are prepared in vibrational ground states and in the first triplet electronic state.
在这项工作中,我们为典型多原子反应OH + HO → O + HO开发了一种基于模式组合哈密顿算符的系统构建框架。首先,采用一组雅可比坐标通过多球面方法(2009年,484卷,169页)构建动能算符(KEO)。其次,由于该系统的多组态电子结构,构建了一个非绝热势能面(PES),其中第一单重态和三重态涉及自旋轨道耦合。为了改进训练数据库,通过一种流行的迭代优化方法和大量轨迹对随机能量数据的训练集进行了优化。在这里,我们提出了一种自动轨迹方法,而不是在粗糙PES上的经典轨迹,其中梯度直接由当前计算得出。第三,在训练集的基础上,以正则多原子分解(CPD)形式(2021年,17卷,2702 - 2713页)直接构建势能函数,这有助于在基于网格的表示下传播核波函数。为此,采用了用于构建CPD形式的高斯过程回归(GPR)方法,即CPD - GPR方法(2022年,13卷,11128 - 11135页),我们通过引入模式组合(mc)方案对CPD - GPR进行了进一步修正,从而得到了当前的CPD - mc - GPR方法。构建具有模式组合的全维非绝热哈密顿算符,作为测试计算,传播核波函数以初步计算OH + HO → O + HO的反应概率,其中反应物处于振动基态和第一三重态电子态。