Monge-Palacios M, Sarathy S Mani
King Abdullah University of Science and Technology, Clean Combustion Research Center, Thuwal 23955-6900, Saudi Arabia.
Phys Chem Chem Phys. 2018 Feb 7;20(6):4478-4489. doi: 10.1039/c7cp05850k.
Reactions of hydroxyl (OH) and hydroperoxyl (HO) are important for governing the reactivity of combustion systems. We performed post-CCSD(T) ab initio calculations at the W3X-L//CCSD = FC/cc-pVTZ level to explore the triplet ground-state and singlet excited-state potential energy surfaces of the OH + HO → HO + O(Σ)/O(Δ) reactions. Using microcanonical and multistructural canonical transition state theories, we calculated the rate constant for the triplet and singlet channels over the temperature range 200-2500 K, represented by k(T) = 3.08 × 10T exp(1151/RT) + 8.00 × 10T exp(-6896/RT) and k(T) = 2.14 × 10T exp(-2180/RT) in cm mol s, respectively. The branching ratios show that the yield of singlet excited oxygen is small (<0.5% below 1000 K). To ascertain the importance of singlet oxygen channel, our new kinetic information was implemented into the kinetic model for hydrogen combustion recently updated by Konnov (Combust. Flame, 2015, 162, 3755-3772). The updated kinetic model was used to perform HO thermal decomposition simulations for comparison against shock tube experiments performed by Hong et al. (Proc. Combust. Inst., 2013, 34, 565-571), and to estimate flame speeds and ignition delay times in H mixtures. The simulation predicted a larger amount of O(Δ) in HO decomposition than that predicted by Konnov's original model. These differences in the O(Δ) yield are due to the use of a higher ab initio level and a more sophisticated methodology to compute the rate constant than those used in previous studies, thereby predicting a significantly larger rate constant. No effect was observed on the rate of the HO decomposition and on the flame speeds and ignition delay times of different H-oxidizer mixtures. However, if the oxidizer is seeded with O, small differences appear in the flame speed. Given that O(Δ) is much more reactive than O(Σ), we do not preclude an effect of the singlet channel of the titled reaction in other combustion systems, especially in systems where excited oxygen plays an important role.
羟基(OH)和氢过氧自由基(HO)的反应对于控制燃烧系统的反应活性至关重要。我们在W3X-L//CCSD = FC/cc-pVTZ水平上进行了后耦合簇双激发(T)从头算计算,以探索OH + HO → HO + O(Σ)/O(Δ)反应的三重态基态和单重态激发态势能面。使用微正则和多结构正则过渡态理论,我们计算了200 - 2500 K温度范围内三重态和单重态通道的速率常数,分别表示为k(T) = 3.08 × 10T exp(1151/RT) + 8.00 × 10T exp(-6896/RT)和k(T) = 2.14 × 10T exp(-2180/RT),单位为cm³mol⁻¹s⁻¹。分支比表明,单重态激发氧的产率较小(在1000 K以下<0.5%)。为了确定单重态氧通道的重要性,我们将新的动力学信息纳入了最近由科诺夫更新的氢燃烧动力学模型(《燃烧与火焰》,2015年,第162卷,3755 - 3772页)。更新后的动力学模型用于进行HO热分解模拟,以与洪等人进行的激波管实验(《燃烧学会会刊》,2013年,第34卷,565 - 571页)进行比较,并估计H混合物中的火焰速度和点火延迟时间。模拟预测HO分解中O(Δ)的量比科诺夫的原始模型预测的要多。O(Δ)产率的这些差异是由于使用了比以前研究更高的从头算水平和更复杂的方法来计算速率常数,从而预测出显著更大的速率常数。在HO分解速率以及不同H - 氧化剂混合物的火焰速度和点火延迟时间上未观察到影响。然而,如果氧化剂中加入了O,则火焰速度会出现小的差异。鉴于O(Δ)比O(Σ)的反应活性高得多,我们并不排除标题反应的单重态通道在其他燃烧系统中的影响,特别是在激发氧起重要作用的系统中。