文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于数据挖掘模型的血浆 microRNAs 对非小细胞肺癌的预后价值。

Prognostic value of plasma microRNAs for non-small cell lung cancer based on data mining models.

机构信息

Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China.

The Key Laboratory of Nanomedicine and Health Inspection of Zhengzhou, Zhengzhou University, Zhengzhou, China.

出版信息

BMC Cancer. 2024 Jan 10;24(1):52. doi: 10.1186/s12885-024-11830-9.


DOI:10.1186/s12885-024-11830-9
PMID:38200421
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10777550/
Abstract

BACKGROUND: As biomarkers, microRNAs (miRNAs) are closely associated with the occurrence, progression, and prognosis of non-small cell lung cancer (NSCLC). However, the prognostic predictive value of miRNAs in NSCLC has rarely been explored. In this study, the value in prognosis prediction of NSCLC was mined based on data mining models using clinical data and plasma miRNAs biomarkers. METHODS: A total of 69 patients were included in this prospective cohort study. After informed consent, they filled out questionnaires and had their peripheral blood collected. The expressions of plasma miRNAs were examined by quantitative polymerase chain reaction (qPCR). The Whitney U test was used to analyze non-normally distributed data. Kaplan-Meier was used to plot the survival curve, the log-rank test was used to compare with the overall survival curve, and the Cox proportional hazards model was used to screen the factors related to the prognosis of lung cancer. Data mining techniques were utilized to predict the prognostic status of patients. RESULTS: We identified that smoking (HR = 2.406, 95% CI = 1.256-4.611), clinical stage III + IV (HR = 5.389, 95% CI = 2.290-12.684), the high expression group of miR-20a (HR = 4.420, 95% CI = 1.760-11.100), the high expression group of miR-197 (HR = 3.828, 95% CI = 1.778-8.245), the low expression group of miR-145 ( HR = 0.286, 95% CI = 0.116-0.709), and the low expression group of miR-30a (HR = 0.307, 95% CI = 0.133-0.706) was associated with worse prognosis. Among the five data mining models, the decision trees (DT) C5.0 model performs the best, with accuracy and Area Under Curve (AUC) of 93.75% and 0.929 (0.685, 0.997), respectively. CONCLUSION: The results showed that the high expression level of miR-20a and miR-197, the low expression level of miR-145 and miR-30a were strongly associated with poorer prognosis in NSCLC patients, and the DT C5.0 model may serve as a novel, accurate, method for predicting prognosis of NSCLC.

摘要

背景:微小 RNA(miRNA)作为生物标志物与非小细胞肺癌(NSCLC)的发生、进展和预后密切相关。然而,miRNA 对 NSCLC 的预后预测价值很少被探索。本研究基于临床数据和血浆 miRNA 生物标志物,利用数据挖掘模型挖掘 NSCLC 预后预测的价值。

方法:本前瞻性队列研究共纳入 69 例患者。在知情同意后,他们填写问卷并采集外周血。通过实时定量聚合酶链反应(qPCR)检测血浆 miRNA 的表达。采用非正态分布数据的 Whitney U 检验。Kaplan-Meier 用于绘制生存曲线,对数秩检验用于比较总生存曲线,Cox 比例风险模型用于筛选与肺癌预后相关的因素。数据挖掘技术用于预测患者的预后状态。

结果:我们发现吸烟(HR=2.406,95%CI=1.256-4.611)、临床分期 III+IV(HR=5.389,95%CI=2.290-12.684)、miR-20a 高表达组(HR=4.420,95%CI=1.760-11.100)、miR-197 高表达组(HR=3.828,95%CI=1.778-8.245)、miR-145 低表达组(HR=0.286,95%CI=0.116-0.709)和 miR-30a 低表达组(HR=0.307,95%CI=0.133-0.706)与预后不良相关。在五个数据挖掘模型中,决策树(DT)C5.0 模型表现最好,准确性和曲线下面积(AUC)分别为 93.75%和 0.929(0.685,0.997)。

结论:结果表明,miR-20a 和 miR-197 的高表达水平、miR-145 和 miR-30a 的低表达水平与 NSCLC 患者的预后不良密切相关,DT C5.0 模型可能成为预测 NSCLC 预后的一种新的、准确的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7696/10777550/a755f2abdd7e/12885_2024_11830_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7696/10777550/d803a0a020a9/12885_2024_11830_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7696/10777550/a755f2abdd7e/12885_2024_11830_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7696/10777550/d803a0a020a9/12885_2024_11830_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7696/10777550/a755f2abdd7e/12885_2024_11830_Fig2_HTML.jpg

相似文献

[1]
Prognostic value of plasma microRNAs for non-small cell lung cancer based on data mining models.

BMC Cancer. 2024-1-10

[2]
Clinicopathological and prognostic significance of microRNA-107 in human non small cell lung cancer.

Int J Clin Exp Pathol. 2014-6-15

[3]
Five microRNAs in plasma as novel biomarkers for screening of early-stage non-small cell lung cancer.

Respir Res. 2014-11-25

[4]
Circulating exosomal microRNAs as prognostic biomarkers for non-small-cell lung cancer.

Oncotarget. 2017-2-21

[5]
Plasma miRNAs in predicting radiosensitivity in non-small cell lung cancer.

Tumour Biol. 2016-9

[6]
Down-regulation of microRNA-126 and microRNA-133b acts as novel predictor biomarkers in progression and metastasis of non small cell lung cancer.

Int J Clin Exp Pathol. 2015-11-1

[7]
Down-regulated MicroRNA 148b expression as predictive biomarker and its prognostic significance associated with clinicopathological features in non-small-cell lung cancer patients.

Diagn Pathol. 2015-9-17

[8]
Decreased expression of miR-204 in plasma is associated with a poor prognosis in patients with non-small cell lung cancer.

Int J Mol Med. 2015-12

[9]
Serum miR-339-3p as a potential diagnostic marker for non-small cell lung cancer.

Cancer Biol Med. 2020-8-15

[10]
Down-regulated microRNA-375 expression as a predictive biomarker in non-small cell lung cancer brain metastasis and its prognostic significance.

Pathol Res Pract. 2017-8

引用本文的文献

[1]
Diagnosis of lung cancer using salivary miRNAs expression and clinical characteristics.

BMC Pulm Med. 2025-1-25

本文引用的文献

[1]
Bayesian Convolutional Neural Networks in Medical Imaging Classification: A Promising Solution for Deep Learning Limits in Data Scarcity Scenarios.

J Digit Imaging. 2023-12

[2]
Decision trees: from efficient prediction to responsible AI.

Front Artif Intell. 2023-7-26

[3]
Molecular Pathology of Lung Cancer.

Surg Pathol Clin. 2021-9

[4]
GEO Data Mining Identifies OLR1 as a Potential Biomarker in NSCLC Immunotherapy.

Front Oncol. 2021-4-20

[5]
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.

CA Cancer J Clin. 2021-5

[6]
MicroRNA-based biomarkers for diagnosis of non-small cell lung cancer (NSCLC).

Thorac Cancer. 2020-3

[7]
Assessment of the Diagnostic Utility of Serum MicroRNA Classification in Patients With Diffuse Glioma.

JAMA Netw Open. 2019-12-2

[8]
Diagnostic Value of Plasma MicroRNAs for Lung Cancer Using Support Vector Machine Model.

J Cancer. 2019-8-28

[9]
Epidemiology of lung cancer in China.

Thorac Cancer. 2018-11-28

[10]
Diagnostic and Prognostic Potential of Circulating Long Non-Coding RNAs in Non Small Cell Lung Cancer.

Cell Physiol Biochem. 2018

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索