Rodríguez Mallma Mirko Jerber, Vilca-Aguilar Marcos, Zuloaga-Rotta Luis, Borja-Rosales Rubén, Salas-Ojeda María, Mauricio David
Facultad de Ingeniería Industrial y de Sistemas, Universidad Nacional de Ingeniería, Lima 15333, Peru.
Instituto de Radiocirugía del Perú, Clínica San Pablo, Lima 15023, Peru.
Diagnostics (Basel). 2023 Dec 22;14(1):22. doi: 10.3390/diagnostics14010022.
A cerebral arteriovenous malformation (AVM) is a tangle of abnormal blood vessels that irregularly connects arteries and veins. Stereotactic radiosurgery (SRS) has been shown to be an effective treatment for AVM patients, but the factors associated with AVM obliteration remains a matter of debate. In this study, we aimed to develop a model that can predict whether patients with AVM will be cured 36 months after intervention by means of SRS and identify the most important predictors that explain the probability of being cured. A machine learning (ML) approach was applied using decision tree (DT) and logistic regression (LR) techniques on historical data (sociodemographic, clinical, treatment, angioarchitecture, and radiosurgery procedure) of 202 patients with AVM who underwent SRS at the Instituto de Radiocirugía del Perú (IRP) between 2005 and 2018. The LR model obtained the best results for predicting AVM cure with an accuracy of 0.92, sensitivity of 0.93, specificity of 0.89, and an area under the curve (AUC) of 0.98, which shows that ML models are suitable for predicting the prognosis of medical conditions such as AVM and can be a support tool for medical decision-making. In addition, several factors were identified that could explain whether patients with AVM would be cured at 36 months with the highest likelihood: the location of the AVM, the occupation of the patient, and the presence of hemorrhage.
脑动静脉畸形(AVM)是一团异常血管,不规则地连接动脉和静脉。立体定向放射外科手术(SRS)已被证明是治疗AVM患者的有效方法,但与AVM闭塞相关的因素仍存在争议。在本研究中,我们旨在开发一种模型,该模型可以预测接受SRS干预36个月后AVM患者是否会治愈,并确定解释治愈可能性的最重要预测因素。我们采用机器学习(ML)方法,对2005年至2018年期间在秘鲁放射外科研究所(IRP)接受SRS治疗的202例AVM患者的历史数据(社会人口统计学、临床、治疗、血管结构和放射外科手术过程)应用决策树(DT)和逻辑回归(LR)技术。LR模型在预测AVM治愈方面取得了最佳结果,准确率为0.92,灵敏度为0.93,特异性为0.89,曲线下面积(AUC)为0.98,这表明ML模型适用于预测AVM等疾病的预后,并且可以作为医疗决策的支持工具。此外,还确定了几个因素,这些因素可以最大程度地解释AVM患者在36个月时是否会治愈:AVM的位置、患者的职业以及出血情况。