文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多壁碳纳米管(MWCNTs)/聚丙烯纤维(PP纤维)水泥基材料的性能研究

Study on the Properties of Multi-Walled Carbon Nanotubes (MWCNTs)/Polypropylene Fiber (PP Fiber) Cement-Based Materials.

作者信息

Niu Xiangjie, Chen Yuanzhao, Li Zhenxia, Guo Tengteng, Ren Meng, Chen Yanyan

机构信息

School of Civil Engineering and Communication, North China University of Water Resources and Electric Power, Zhengzhou 450045, China.

Technology Innovation Center of Henan Transport Industry of Utilization of Solid Waste Resources in Traffic Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China.

出版信息

Polymers (Basel). 2023 Dec 21;16(1):41. doi: 10.3390/polym16010041.


DOI:10.3390/polym16010041
PMID:38201706
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10780317/
Abstract

In order to improve the mechanical properties and durability of cement-based materials, a certain amount of multi-walled carbon nanotubes (MWCNTs) and polypropylene fiber (PP fiber) were incorporated into cement-based materials. The mechanical properties of the multi-walled carbon nanotubes/polypropylene fiber cement-based materials were evaluated using flexural strength tests, compressive strength tests, and splitting tensile tests. The effects of multi-walled carbon nanotubes and polypropylene fiber on the durability of cement-based materials were studied using drying shrinkage tests and freeze-thaw cycle tests. The effects of the multi-walled carbon nanotubes and polypropylene fibers on the microstructure and pore structure of the cement-based materials were compared and analyzed using scanning electron microscopy and mercury intrusion tests. The results showed that the mechanical properties and durability of cement-based materials can be significantly improved when the content of multi-walled carbon nanotubes is 0.1-0.15%. The compressive strength can be increased by 9.5% and the mass loss rate is reduced by 27.9%. Polypropylene fiber has little effect on the compressive strength of the cement-based materials, but it significantly enhances the toughness of the cement-based materials. When its content is 0.2-0.3%, it has the best effect on improving the mechanical properties and durability of the cement-based materials. The flexural strength is increased by 19.1%, and the dry shrinkage rate and water loss rate are reduced by 14.3% and 16.1%, respectively. The three-dimensional network structure formed by the polypropylene fiber in the composite material plays a role in toughening and cracking resistance, but it has a certain negative impact on the pore structure of the composite material. The incorporation of multi-walled carbon nanotubes can improve the bonding performance of the polypropylene fiber and cement matrix, make up for the internal defects caused by the polypropylene fiber, and reduce the number of harmful holes and multiple harmful holes so that the cement-based composite material not only has a significant increase in toughness but also has a denser internal structure.

摘要

为了提高水泥基材料的力学性能和耐久性,将一定量的多壁碳纳米管(MWCNTs)和聚丙烯纤维(PP纤维)掺入水泥基材料中。采用抗折强度试验、抗压强度试验和劈裂抗拉试验对多壁碳纳米管/聚丙烯纤维水泥基材料的力学性能进行了评价。通过干燥收缩试验和冻融循环试验研究了多壁碳纳米管和聚丙烯纤维对水泥基材料耐久性的影响。利用扫描电子显微镜和压汞试验对多壁碳纳米管和聚丙烯纤维对水泥基材料微观结构和孔结构的影响进行了比较和分析。结果表明,当多壁碳纳米管含量为0.1 - 0.15%时,水泥基材料的力学性能和耐久性可得到显著提高。抗压强度可提高9.5%,质量损失率降低27.9%。聚丙烯纤维对水泥基材料的抗压强度影响较小,但能显著提高水泥基材料的韧性。当其含量为0.2 - 0.3%时,对改善水泥基材料的力学性能和耐久性效果最佳。抗折强度提高19.1%,干缩率和失水率分别降低14.3%和16.1%。复合材料中聚丙烯纤维形成的三维网络结构起到增韧和抗裂作用,但对复合材料的孔结构有一定负面影响。多壁碳纳米管的掺入可以提高聚丙烯纤维与水泥基体的粘结性能,弥补聚丙烯纤维造成的内部缺陷,减少有害孔和多重有害孔的数量,使水泥基复合材料不仅韧性显著提高,而且内部结构更加致密。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/5140ee618c68/polymers-16-00041-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/d527859b87b6/polymers-16-00041-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/6f75fbead2df/polymers-16-00041-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/998c4a49b7aa/polymers-16-00041-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/8c9a824b3942/polymers-16-00041-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/f0d95686c5f6/polymers-16-00041-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/7f46b73569a2/polymers-16-00041-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/0b8f7ee7a11a/polymers-16-00041-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/227bdfb58826/polymers-16-00041-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/b991e3df55f4/polymers-16-00041-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/e93201d5c6e3/polymers-16-00041-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/2e724e948877/polymers-16-00041-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/a36369b3a457/polymers-16-00041-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/bb93d68f8ddf/polymers-16-00041-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/b7bc8e9b24e6/polymers-16-00041-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/e956faaa8235/polymers-16-00041-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/5140ee618c68/polymers-16-00041-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/d527859b87b6/polymers-16-00041-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/6f75fbead2df/polymers-16-00041-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/998c4a49b7aa/polymers-16-00041-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/8c9a824b3942/polymers-16-00041-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/f0d95686c5f6/polymers-16-00041-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/7f46b73569a2/polymers-16-00041-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/0b8f7ee7a11a/polymers-16-00041-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/227bdfb58826/polymers-16-00041-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/b991e3df55f4/polymers-16-00041-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/e93201d5c6e3/polymers-16-00041-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/2e724e948877/polymers-16-00041-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/a36369b3a457/polymers-16-00041-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/bb93d68f8ddf/polymers-16-00041-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/b7bc8e9b24e6/polymers-16-00041-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/e956faaa8235/polymers-16-00041-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/815e/10780317/5140ee618c68/polymers-16-00041-g016.jpg

相似文献

[1]
Study on the Properties of Multi-Walled Carbon Nanotubes (MWCNTs)/Polypropylene Fiber (PP Fiber) Cement-Based Materials.

Polymers (Basel). 2023-12-21

[2]
Investigation on the Mechanical Properties of a Cement-Based Material Containing Carbon Nanotube under Drying and Freeze-Thaw Conditions.

Materials (Basel). 2015-12-14

[3]
Experimental Study on the Salt Freezing Durability of Multi-Walled Carbon Nanotube Ultra-High-Performance Concrete.

Materials (Basel). 2022-4-28

[4]
Effect of Multi-Walled Carbon Nanotubes on Improving the Toughness of Reactive Powder Concrete.

Materials (Basel). 2019-8-17

[5]
Effect of Multi-Walled Carbon Nanotubes on Strength and Electrical Properties of Cement Mortar.

Materials (Basel). 2020-12-26

[6]
Mechanical Properties and Durability of Ultra High Strength Concrete Incorporating Multi-Walled Carbon Nanotubes.

Materials (Basel). 2016-5-27

[7]
Mechanical Properties and Microstructure of Polypropylene-Glass-Fiber-Reinforced Desert Sand Concrete.

Polymers (Basel). 2023-12-11

[8]
Research on Performance Deterioration of Multi-Walled Carbon Nanotube-Lithium Slag Concrete under the Coupling Effect of Sulfate Attack and Dry-Wet Cycles.

Materials (Basel). 2023-7-20

[9]
Analysis of Mechanical Properties of Fiber-Reinforced Soil Cement Based on Kaolin.

Materials (Basel). 2024-5-4

[10]
Effect of Surface Treatment of Polypropylene (PP) Fiber on the Sulfate Corrosion Resistance of Cement Mortar.

Materials (Basel). 2021-7-1

引用本文的文献

[1]
Polypropylene Modified with Carbon Nanomaterials: Structure, Properties and Application (A Review).

Polymers (Basel). 2025-2-17

[2]
Comparative analysis of the effects of Nano-SiO and carbon nanotubes on mechanical properties of polyethylene fibre reinforced cementitious composites.

Sci Rep. 2025-2-17

本文引用的文献

[1]
Dispersion of Multi-Walled Carbon Nanotubes into White Cement Mortars: The Effect of Concentration and Surfactants.

Nanomaterials (Basel). 2022-3-21

[2]
Recycled Fibers for Sustainable Hybrid Fiber Cement Based Material: A Review.

Materials (Basel). 2021-5-5

[3]
Effect of Short Fiber Reinforcements on Fracture Performance of Cement-Based Materials: A Systematic Review Approach.

Materials (Basel). 2021-4-1

[4]
Effect of Multi-Walled Carbon Nanotubes on Strength and Electrical Properties of Cement Mortar.

Materials (Basel). 2020-12-26

[5]
Characteristics of Recycled Polypropylene Fibers as an Addition to Concrete Fabrication Based on Portland Cement.

Materials (Basel). 2020-4-13

[6]
Nanocelluloses: Natural-Based Materials for Fiber-Reinforced Cement Composites. A Critical Review.

Polymers (Basel). 2019-3-19

[7]
Investigation on the Mechanical Properties of a Cement-Based Material Containing Carbon Nanotube under Drying and Freeze-Thaw Conditions.

Materials (Basel). 2015-12-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索