文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

研究非异氰酸酯聚氨酯/多面体低聚倍半硅氧烷杂化水凝胶中的水-聚合物相互作用

Examining the Water-Polymer Interactions in Non-Isocyanate Polyurethane/Polyhedral Oligomeric Silsesquioxane Hybrid Hydrogels.

作者信息

Łukaszewska Izabela, Bukowczan Artur, Raftopoulos Konstantinos N, Pielichowski Krzysztof

机构信息

Department of Chemistry and Technology of Polymers, Cracow University of Technology, ul. Warszawska 24, 31-155 Kraków, Poland.

出版信息

Polymers (Basel). 2023 Dec 23;16(1):57. doi: 10.3390/polym16010057.


DOI:10.3390/polym16010057
PMID:38201722
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10780322/
Abstract

Non-isocyanate polyurethane (NIPU) networks physically modified with octa(3-hydroxy-3-methylbutyldimethylsiloxy)POSS (8OHPOSS, 0-10 wt%) were conditioned in environments of different relative humidities (up to 97%) to study water-polymer interactions. The equilibrium sorption isotherms are of Brunauer type III in a water activity range of 0-0.97 and are discussed in terms of the Guggenheim (GAB) sorption model. The study shows that the introduction of 8OHPOSS, even in a large amount (10 wt%), does not hinder the water affinity of the NIPU network despite the hydrophobic nature of POSS; this is attributable to the homogenous dispersion of POSS in the polymer matrix. The shift in the urethane-derived carbonyl bands toward lower wavenumbers with a simultaneous shift in the urethane N-H bending bands toward higher wavenumbers exposes the breakage of polymer-polymer hydrogen bonds upon water uptake due to the formation of stronger water-polymer hydrogen bonds. Upon water absorption, a notable decrease in the glass transition temperature (Tg) is observed for all studied materials. The progressive reduction in Tg with water uptake is driven by plasticization and slaving mechanisms. POSS moieties are thought to impact slaving indirectly by slightly affecting water uptake at very high hydration levels.

摘要

用八(3-羟基-3-甲基丁基二甲基硅氧基)倍半硅氧烷(8OHPOSS,0-10重量%)进行物理改性的非异氰酸酯聚氨酯(NIPU)网络在不同相对湿度(高达97%)的环境中进行处理,以研究水-聚合物相互作用。在水活度范围为0-0.97时,平衡吸附等温线属于布鲁诺尔III型,并根据古根海姆(GAB)吸附模型进行讨论。研究表明,尽管POSS具有疏水性,但即使大量引入8OHPOSS(10重量%)也不会阻碍NIPU网络的亲水性;这归因于POSS在聚合物基体中的均匀分散。聚氨酯衍生的羰基带向低波数移动,同时聚氨酯N-H弯曲带向高波数移动,这表明由于形成了更强的水-聚合物氢键,吸水时聚合物-聚合物氢键断裂。对于所有研究的材料,吸水后玻璃化转变温度(Tg)都有显著降低。随着吸水,Tg的逐渐降低是由增塑和从属机制驱动的。据认为,POSS部分通过在非常高的水合水平下略微影响吸水来间接影响从属作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0588/10780322/62f32a7b4972/polymers-16-00057-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0588/10780322/fd741487b6ee/polymers-16-00057-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0588/10780322/f6c17344835d/polymers-16-00057-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0588/10780322/ba1d7af3021e/polymers-16-00057-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0588/10780322/9bc9c61898d5/polymers-16-00057-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0588/10780322/150ddc507614/polymers-16-00057-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0588/10780322/9b703efe8480/polymers-16-00057-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0588/10780322/99f3daf8e55c/polymers-16-00057-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0588/10780322/ba628a38349d/polymers-16-00057-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0588/10780322/a2500f243391/polymers-16-00057-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0588/10780322/b0668edb971f/polymers-16-00057-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0588/10780322/62f32a7b4972/polymers-16-00057-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0588/10780322/fd741487b6ee/polymers-16-00057-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0588/10780322/f6c17344835d/polymers-16-00057-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0588/10780322/ba1d7af3021e/polymers-16-00057-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0588/10780322/9bc9c61898d5/polymers-16-00057-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0588/10780322/150ddc507614/polymers-16-00057-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0588/10780322/9b703efe8480/polymers-16-00057-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0588/10780322/99f3daf8e55c/polymers-16-00057-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0588/10780322/ba628a38349d/polymers-16-00057-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0588/10780322/a2500f243391/polymers-16-00057-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0588/10780322/b0668edb971f/polymers-16-00057-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0588/10780322/62f32a7b4972/polymers-16-00057-g011.jpg

相似文献

[1]
Examining the Water-Polymer Interactions in Non-Isocyanate Polyurethane/Polyhedral Oligomeric Silsesquioxane Hybrid Hydrogels.

Polymers (Basel). 2023-12-23

[2]
Flexible Polyurethane Foams Reinforced by Functionalized Polyhedral Oligomeric Silsesquioxanes: Structural Characteristics and Evaluation of Thermal/Flammability Properties.

Polymers (Basel). 2022-11-5

[3]
Examining the influence of functionalized POSS on the structure and bioactivity of flexible polyurethane foams.

Mater Sci Eng C Mater Biol Appl. 2019-11-2

[4]
Poly(N-isopropylacrylamide) nanocrosslinked by polyhedral oligomeric silsesquioxane: temperature-responsive behavior of hydrogels.

J Colloid Interface Sci. 2007-3-15

[5]
POSS Compounds as Modifiers for Rigid Polyurethane Foams (Composites).

Polymers (Basel). 2019-6-27

[6]
Mechanically Robust Hybrid POSS Thermoplastic Polyurethanes with Enhanced Surface Hydrophobicity.

Polymers (Basel). 2019-2-20

[7]
Synthesis and properties of hydroxyl-terminated polybutadiene-based polyurethanes reinforced with polyhedral oligomeric silsesquioxanes.

J Nanosci Nanotechnol. 2014-11

[8]
Rapid deswelling and reswelling response of poly(N-isopropylacrylamide) hydrogels via formation of interpenetrating polymer networks with polyhedral oligomeric silsesquioxane-capped poly(ethylene oxide) amphiphilic telechelics.

J Phys Chem B. 2009-9-3

[9]
Rationalizing the Composition Dependence of Glass Transition Temperatures in Amorphous Polymer/POSS Composites.

ACS Macro Lett. 2021-11-16

[10]
Recent Progress on Designable Hybrids with Stimuli-Responsive Optical Properties Originating from Molecular Assembly Concerning Polyhedral Oligomeric Silsesquioxane.

Chem Asian J. 2022-5-16

引用本文的文献

[1]
Structure-Glass Transition Relationships in Non-Isocyanate Polyhydroxyurethanes.

Molecules. 2024-8-27

本文引用的文献

[1]
Latest Advancements in the Development of High-Performance Lignin- and Tannin-Based Non-Isocyanate Polyurethane Adhesive for Wood Composites.

Polymers (Basel). 2023-9-23

[2]
Expression of concern: Synthesis of MA POSS-PMMA as an intraocular lens material with high light transmittance and good cytocompatibility.

RSC Adv. 2023-9-5

[3]
POSS and SSQ Materials in Dental Applications: Recent Advances and Future Outlooks.

Int J Mol Sci. 2023-2-24

[4]
Synthesis of Novel Non-Isocyanate Polyurethane/Functionalized Boron Nitride Composites.

Polymers (Basel). 2022-9-20

[5]
Hydroxypropyl Cellulose/Pluronic-Based Composite Hydrogels as Biodegradable Mucoadhesive Scaffolds for Tissue Engineering.

Gels. 2022-8-19

[6]
Nanocomposites of Polyhydroxyurethane with POSS Microdomains: Synthesis via Non-Isocyanate Approach, Morphologies and Reprocessing Properties.

Polymers (Basel). 2022-3-25

[7]
Recent Advances in Polyurethane/POSS Hybrids for Biomedical Applications.

Molecules. 2021-12-22

[8]
Trends in non-isocyanate polyurethane (NIPU) development.

Chem Commun (Camb). 2021-11-19

[9]
Crystallization-Induced Gelling as a Method to 4D Print Low-Water-Content Non-isocyanate Polyurethane Hydrogels.

Chem Mater. 2021-9-28

[10]
Recent Advances in Fabrication of Non-Isocyanate Polyurethane-Based Composite Materials.

Materials (Basel). 2021-6-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索