Guo Fei, Ma Hui, Yang Bin-Bin, Wang Zhen, Meng Xiang-Gao, Bu Jian-Hua, Zhang Chun
National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Technology Institute, Wuhan Textile University, Wuhan 430200, China.
College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China.
Polymers (Basel). 2024 Jan 4;16(1):156. doi: 10.3390/polym16010156.
In the pursuit of advancing materials for methane storage, a critical consideration arises given the prominence of natural gas (NG) as a clean transportation fuel, which holds substantial potential for alleviating the strain on both energy resources and the environment in the forthcoming decade. In this context, a novel approach is undertaken, employing the rigid triptycene as a foundational building block. This strategy is coupled with the incorporation of dichloromethane and 1,3-dichloropropane, serving as rigid and flexible linkers, respectively. This combination not only enables cost-effective fabrication but also expedites the creation of two distinct triptycene-based hypercrosslinked polymers (HCPs), identified as PTN-70 and PTN-71. Surprisingly, despite PTN-71 manifesting an inferior Brunauer-Emmett-Teller (BET) surface area when compared to the rigidly linked PTN-70, it showcases remarkably enhanced methane adsorption capabilities, particularly under high-pressure conditions. At a temperature of 275 K and a pressure of 95 bars, PTN-71 demonstrates an impressive methane adsorption capacity of 329 cm g. This exceptional performance is attributed to the unique flexible network structure of PTN-71, which exhibits a pronounced swelling response when subjected to elevated pressure conditions, thus elucidating its superior methane adsorption characteristics. The development of these advanced materials not only signifies a significant stride in the realm of methane storage but also underscores the importance of tailoring the structural attributes of hypercrosslinked polymers for optimized gas adsorption performance.
在致力于开发用于甲烷储存的材料的过程中,鉴于天然气(NG)作为一种清洁运输燃料的突出地位,一个关键的考量因素应运而生。天然气在未来十年具有巨大潜力,能够缓解能源资源和环境的压力。在此背景下,采用了一种新颖的方法,以刚性的三蝶烯作为基础构建单元。该策略还结合了二氯甲烷和1,3 - 二氯丙烷的引入,它们分别作为刚性和柔性连接体。这种组合不仅能够实现具有成本效益的制备,还加速了两种不同的基于三蝶烯的超交联聚合物(HCPs)的制备,分别命名为PTN - 70和PTN - 71。令人惊讶的是,尽管与刚性连接的PTN - 70相比,PTN - 71的布鲁诺尔 - 埃米特 - 泰勒(BET)表面积较低,但它展现出显著增强的甲烷吸附能力,特别是在高压条件下。在275 K的温度和95巴的压力下,PTN - 71表现出令人印象深刻的329 cm³/g的甲烷吸附容量。这种卓越的性能归因于PTN - 71独特的柔性网络结构,当受到高压条件时,它会表现出明显的溶胀响应,从而阐明了其优越的甲烷吸附特性发展。这些先进材料的开发不仅标志着甲烷储存领域的重大进展,也凸显了为优化气体吸附性能而调整超交联聚合物结构属性的重要性。