Soto Cenit, Torres-Cuevas Edwin S, González-Ortega Alfonso, Palacio Laura, Prádanos Pedro, Freeman Benny D, Lozano Ángel E, Hernandez Antonio
Surfaces and Porous Materials (SMAP), Associated Research Unit to CSIC, Facultad de Ciencias, University of Valladolid, Paseo Belén 7, E-47011 Valladolid, Spain.
Institute of Sustainable Processes (ISP), Dr. Mergelina s/n, E-47011 Valladolid, Spain.
Polymers (Basel). 2021 Dec 11;13(24):4343. doi: 10.3390/polym13244343.
Mixed matrix membranes (MMMs) consisting of a blend of a hydroxypolyamide (HPA) matrix and variable loads of a porous polymer network (PPN) were thermally treated to induce the transformation of HPA to polybenzoxazole (β-TR-PBO). Here, the HPA matrix was a hydroxypolyamide having two hexafluoropropyilidene moieties, 6FCl-APAF, while the PPN was prepared by reacting triptycene (TRP) and trifluoroacetophenone (TFAP) in a superacid solution. The most probable size of the PPN particles was 75 nm with quite large distributions. The resulting membranes were analyzed by SEM and AFM. Up to 30% PPN loads, both SEM and AFM images confirmed quite planar surfaces, at low scale, with limited roughness. Membranes with high hydrogen permeability and good selectivity for the gas pairs H/CH and H/N were obtained. For H/CO, selectivity almost vanished after thermal rearrangement. In all cases, their hydrogen permeability increased with increasing loads of PPN until around 30% PPN with ulterior fairly abrupt decreasing of permeability for all gases studied. Thermal rearrangement of the MMMs resulted in higher permeabilities but lower selectivities. For all the membranes and gas pairs studied, the balance of permeability vs. selectivity surpassed the 1991 Robeson's upper bound, and approached or even exceeded the 2008 line, for MMMs having 30% PPN loads. In all cases, the HPA-MMMs before thermal rearrangement provided good selectivity versus permeability compromise, similar to their thermally rearranged counterparts but in the zone of high selectivity. For H/CH, H/N, these nonthermally rearranged MMMs approach the 2008 Robeson's upper bound while H/CO gives selective transport favoring H on the 1991 Robeson's bound. Thus, attending to the energy cost of thermal rearrangement, it could be avoided in some cases especially when high selectivity is the target rather than high permeability.
由羟基聚酰胺(HPA)基体与不同负载量的多孔聚合物网络(PPN)混合而成的混合基质膜(MMM)经过热处理,以促使HPA转变为聚苯并恶唑(β-TR-PBO)。在此,HPA基体是具有两个六氟亚丙基部分的羟基聚酰胺6FCl-APAF,而PPN是通过三蝶烯(TRP)与三氟苯乙酮(TFAP)在超酸溶液中反应制备的。PPN颗粒最可能的尺寸为75纳米,分布相当宽泛。通过扫描电子显微镜(SEM)和原子力显微镜(AFM)对所得膜进行了分析。PPN负载量高达30%时,SEM和AFM图像均证实,在低尺度下,膜表面相当平整,粗糙度有限。获得了对H/CH和H/N气体对具有高氢气渗透率和良好选择性的膜。对于H/CO气体对,热重排后选择性几乎消失。在所有情况下,随着PPN负载量的增加,它们的氢气渗透率都会升高,直至PPN负载量约为30%,此后,所有研究气体的渗透率都相当突然地下降。MMM的热重排导致渗透率升高,但选择性降低。对于所有研究的膜和气体对,渗透率与选择性的平衡超过了1991年罗伯逊上限,对于PPN负载量为30% 的MMM,接近甚至超过了2008年的界限。在所有情况下,热重排前的HPA-MMM在选择性与渗透率之间实现了良好的折衷,与其热重排后的对应物类似,但处于高选择性区域。对于H/CH、H/N气体对,这些未热重排MMM接近2008年罗伯逊上限,而对于H/CO气体对,在1991年罗伯逊界限上表现出有利于H的选择性传输。因此,考虑到热重排的能量成本,在某些情况下可以避免热重排,特别是当目标是高选择性而非高渗透率时。