School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
Nutrients. 2023 Dec 25;16(1):77. doi: 10.3390/nu16010077.
The purpose of this study was to investigate genetic factors associated with metabolic syndrome (MetS) by conducting a large-scale genome-wide association study (GWAS) in Taiwan, addressing the limited data on Asian populations compared to Western populations. Using data from the Taiwan Biobank, comprehensive clinical and genetic information from 107,230 Taiwanese individuals was analyzed. Genotyping data from the TWB1.0 and TWB2.0 chips, including over 650,000 single nucleotide polymorphisms (SNPs), were utilized. Genotype imputation using the 1000 Genomes Project was performed, resulting in more than 9 million SNPs. MetS was defined based on a modified version of the Adult Treatment Panel III criteria. Among all participants (mean age: 50 years), 23% met the MetS definition. GWAS analysis identified 549 SNPs significantly associated with MetS, collectively mapping to 10 genomic risk loci. Notable risk loci included rs1004558, rs3812316, rs326, rs4486200, rs2954038, rs10830963, rs662799, rs62033400, rs183130, and rs34342646. Gene-set analysis revealed 22 associated genes: , , , , , , , , , , , , , , , , , , , , , and This study identified genomic risk loci for MetS in a large Taiwanese population through a comprehensive GWAS approach. These associations provide novel insights into the genetic basis of MetS and hold promise for the potential discovery of clinical biomarkers.
本研究旨在通过在台湾进行大规模全基因组关联研究(GWAS),探讨与代谢综合征(MetS)相关的遗传因素,以弥补亚洲人群与西方人群相比数据有限的问题。本研究利用来自台湾生物银行的资料,对 107230 名台湾个体的综合临床和遗传信息进行了分析。研究使用了 TWB1.0 和 TWB2.0 芯片的基因分型资料,其中包括超过 650000 个单核苷酸多态性(SNP)。通过使用 1000 基因组计划进行基因型推断,获得了超过 900 万个 SNP。MetS 是根据成人治疗小组 III 标准的修订版定义的。在所有参与者(平均年龄:50 岁)中,23%符合 MetS 定义。GWAS 分析确定了 549 个与 MetS 显著相关的 SNP,这些 SNP 共同映射到 10 个基因组风险位点。值得注意的风险位点包括 rs1004558、rs3812316、rs326、rs4486200、rs2954038、rs10830963、rs662799、rs62033400、rs183130 和 rs34342646。基因集分析揭示了 22 个相关基因:,,,,,,,,,,,,,,,,,,,, 和 本研究通过全面的 GWAS 方法,在一个大型台湾人群中确定了与 MetS 相关的基因组风险位点。这些关联为 MetS 的遗传基础提供了新的见解,并有望为临床生物标志物的潜在发现提供依据。