文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

在具有临床代表性的锥形束计算机断层扫描(CBCT)数据集上评估根尖周病变检测卷积神经网络(CNN)——一项验证研究

Evaluating a Periapical Lesion Detection CNN on a Clinically Representative CBCT Dataset-A Validation Study.

作者信息

Hadzic Arnela, Urschler Martin, Press Jan-Niclas Aaron, Riedl Regina, Rugani Petra, Štern Darko, Kirnbauer Barbara

机构信息

Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, 8036 Graz, Austria.

Division of Oral Surgery and Orthodontics, Medical University of Graz, 8010 Graz, Austria.

出版信息

J Clin Med. 2023 Dec 29;13(1):197. doi: 10.3390/jcm13010197.


DOI:10.3390/jcm13010197
PMID:38202204
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10779652/
Abstract

The aim of this validation study was to comprehensively evaluate the performance and generalization capability of a deep learning-based periapical lesion detection algorithm on a clinically representative cone-beam computed tomography (CBCT) dataset and test for non-inferiority. The evaluation involved 195 CBCT images of adult upper and lower jaws, where sensitivity and specificity metrics were calculated for all teeth, stratified by jaw, and stratified by tooth type. Furthermore, each lesion was assigned a periapical index score based on its size to enable a score-based evaluation. Non-inferiority tests were conducted with proportions of 90% for sensitivity and 82% for specificity. The algorithm achieved an overall sensitivity of 86.7% and a specificity of 84.3%. The non-inferiority test indicated the rejection of the null hypothesis for specificity but not for sensitivity. However, when excluding lesions with a periapical index score of one (i.e., very small lesions), the sensitivity improved to 90.4%. Despite the challenges posed by the dataset, the algorithm demonstrated promising results. Nevertheless, further improvements are needed to enhance the algorithm's robustness, particularly in detecting very small lesions and the handling of artifacts and outliers commonly encountered in real-world clinical scenarios.

摘要

这项验证研究的目的是在具有临床代表性的锥束计算机断层扫描(CBCT)数据集上全面评估基于深度学习的根尖周病变检测算法的性能和泛化能力,并进行非劣效性测试。评估涉及195张成人上下颌的CBCT图像,针对所有牙齿计算敏感性和特异性指标,并按颌骨和牙齿类型进行分层。此外,根据病变大小为每个病变指定根尖指数评分,以便进行基于评分的评估。非劣效性测试的敏感性比例为90%,特异性比例为82%。该算法的总体敏感性为86.7%,特异性为84.3%。非劣效性测试表明,特异性的原假设被拒绝,而敏感性的原假设未被拒绝。然而,当排除根尖指数评分为1的病变(即非常小的病变)时,敏感性提高到了90.4%。尽管数据集带来了挑战,但该算法显示出了有前景的结果。尽管如此,仍需要进一步改进以提高算法的鲁棒性,特别是在检测非常小的病变以及处理实际临床场景中常见的伪影和异常值方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d15a/10779652/a324b5f69bdb/jcm-13-00197-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d15a/10779652/a1aa543bc0c4/jcm-13-00197-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d15a/10779652/1a5fbd462ea8/jcm-13-00197-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d15a/10779652/a324b5f69bdb/jcm-13-00197-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d15a/10779652/a1aa543bc0c4/jcm-13-00197-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d15a/10779652/1a5fbd462ea8/jcm-13-00197-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d15a/10779652/a324b5f69bdb/jcm-13-00197-g003.jpg

相似文献

[1]
Evaluating a Periapical Lesion Detection CNN on a Clinically Representative CBCT Dataset-A Validation Study.

J Clin Med. 2023-12-29

[2]
Evaluation of artificial intelligence for detecting periapical pathosis on cone-beam computed tomography scans.

Int Endod J. 2020-2-3

[3]
Artificial Intelligence for the Computer-aided Detection of Periapical Lesions in Cone-beam Computed Tomographic Images.

J Endod. 2020-5-8

[4]
Automatic Detection of Periapical Osteolytic Lesions on Cone-beam Computed Tomography Using Deep Convolutional Neuronal Networks.

J Endod. 2022-11

[5]
Deep learning for detection and 3D segmentation of maxillofacial bone lesions in cone beam CT.

Eur Radiol. 2023-11

[6]
Influence of dental fillings and tooth type on the performance of a novel artificial intelligence-driven tool for automatic tooth segmentation on CBCT images - A validation study.

J Dent. 2022-4

[7]
Accuracy of digital radiography and cone beam computed tomography on periapical radiolucency detection in endodontically treated teeth.

J Oral Maxillofac Res. 2014-7-1

[8]
Computer-aided diagnosis of periapical cyst and keratocystic odontogenic tumor on cone beam computed tomography.

Comput Methods Programs Biomed. 2017-5-26

[9]
Deep learning-based segmentation of dental implants on cone-beam computed tomography images: A validation study.

J Dent. 2023-10

[10]
A novel deep learning system for multi-class tooth segmentation and classification on cone beam computed tomography. A validation study.

J Dent. 2021-12

引用本文的文献

[1]
A comparative analysis of deep learning models for assisting in the diagnosis of periapical lesions in periapical radiographs.

BMC Oral Health. 2025-5-26

[2]
Comprehensive Insights into Artificial Intelligence for Dental Lesion Detection: A Systematic Review.

Diagnostics (Basel). 2024-12-9

[3]
Periapical lesion detection in periapical radiographs using the latest convolutional neural network ConvNeXt and its integrated models.

Sci Rep. 2024-10-25

[4]
Implicit Is Not Enough: Explicitly Enforcing Anatomical Priors inside Landmark Localization Models.

Bioengineering (Basel). 2024-9-17

本文引用的文献

[1]
A Cone Beam Computed Tomography-Based Investigation of the Frequency and Pattern of Radix Entomolaris in the Saudi Arabian Population.

Medicina (Kaunas). 2023-11-17

[2]
Diagnostic Test Accuracy of Artificial Intelligence in Detecting Periapical Periodontitis on Two-Dimensional Radiographs: A Retrospective Study and Literature Review.

Medicina (Kaunas). 2023-4-15

[3]
Detection of vertical root fractures by cone-beam computed tomography based on deep learning.

Dentomaxillofac Radiol. 2023-2

[4]
Developments and Performance of Artificial Intelligence Models Designed for Application in Endodontics: A Systematic Review.

Diagnostics (Basel). 2023-1-23

[5]
Current Applications of Deep Learning and Radiomics on CT and CBCT for Maxillofacial Diseases.

Diagnostics (Basel). 2022-12-29

[6]
Artificial Intelligence (AI) for Detection and Localization of Unobturated Second Mesial Buccal (MB2) Canals in Cone-Beam Computed Tomography (CBCT).

Diagnostics (Basel). 2022-12-18

[7]
Automated Detection of Cervical Carotid Artery Calcifications in Cone Beam Computed Tomographic Images Using Deep Convolutional Neural Networks.

Diagnostics (Basel). 2022-10-19

[8]
Automatic Classification System for Periapical Lesions in Cone-Beam Computed Tomography.

Sensors (Basel). 2022-8-28

[9]
The effect of a deep-learning tool on dentists' performances in detecting apical radiolucencies on periapical radiographs.

Dentomaxillofac Radiol. 2022-9-1

[10]
Automatic Detection of Periapical Osteolytic Lesions on Cone-beam Computed Tomography Using Deep Convolutional Neuronal Networks.

J Endod. 2022-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索