文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用最新卷积神经网络 ConvNeXt 及其集成模型在根尖射线照片中检测根尖病变。

Periapical lesion detection in periapical radiographs using the latest convolutional neural network ConvNeXt and its integrated models.

机构信息

School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China.

Department of Endodontics, Central Laboratory, Jinan Stamotological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Jinan, 250001, Shandong Province, China.

出版信息

Sci Rep. 2024 Oct 25;14(1):25429. doi: 10.1038/s41598-024-75748-9.


DOI:10.1038/s41598-024-75748-9
PMID:39455655
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11511854/
Abstract

To overcome the limitation of a single classification model's inability to simultaneously identify multiple lesion targets within periapical radiographs, This study proposes YoCNET (Yolov5 + ConvNeXt), a novel deep learning integrated model. YoCNET leverages the target detection capability of Yolov5 and the image classification capability of ConvNeXt to achieve automatic segmentation of individual teeth and concurrent detection of periapical lesions across multiple teeth. A dataset of 1,305 periapical radiographs was used to train and validate the ConvNeXt and ResNet34 models, with an 8:2 split for training and validation. Deciduous teeth were excluded from the dataset. Furthermore, 717 individual teeth images were extracted from 200 previously unused periapical radiographs for integrated model validation. Evaluation metrics included accuracy, precision, sensitivity, F1 score, AUC (Area Under Curve), and a confusion matrix.The YoCNET integrated model demonstrated values of 90.93%, 98.88%, 85.30%, 0.9159, and 0.9757 for accuracy, precision, sensitivity, F1 score, and AUC, respectively. These metrics were superior to those achieved by the YoRNET (Yolov5 + ResNet34) integrated model, which recorded 80.47%, 83.78%, 82.16%, 0.8296, and 0.8822. The integrated model achieved high accuracy and efficiency in automatic teeh segmentation by Yolov5 and in automatically detecting multiple periapical lesions by ConvNeXt. YoCNET exhibited superior overall data performance, making it a more suitable deep learning integrated model for clinical applications.

摘要

为了克服单个分类模型无法同时识别根尖片中多个病变目标的局限性,本研究提出了 YoCNET(Yolov5+ConvNeXt),这是一种新颖的深度学习集成模型。YoCNET 利用了 Yolov5 的目标检测能力和 ConvNeXt 的图像分类能力,实现了单个牙齿的自动分割和多个牙齿的根尖病变的同时检测。使用了一个包含 1305 张根尖片的数据集来训练和验证 ConvNeXt 和 ResNet34 模型,训练和验证的比例为 8:2。该数据集排除了乳牙。此外,从 200 张以前未使用过的根尖片中提取了 717 张单个牙齿图像,用于集成模型验证。评估指标包括准确性、精度、敏感性、F1 分数、AUC(曲线下面积)和混淆矩阵。YoCNET 集成模型的准确性、精度、敏感性、F1 分数和 AUC 分别为 90.93%、98.88%、85.30%、0.9159 和 0.9757。这些指标优于 YoRNET(Yolov5+ResNet34)集成模型的 80.47%、83.78%、82.16%、0.8296 和 0.8822。YoCNET 模型通过 Yolov5 实现了自动牙齿分割的高精度和高效率,通过 ConvNeXt 实现了多个根尖病变的自动检测。YoCNET 表现出了优越的整体数据性能,使其成为更适合临床应用的深度学习集成模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/692b/11511854/bac4b6e18e6d/41598_2024_75748_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/692b/11511854/5de2c59000af/41598_2024_75748_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/692b/11511854/3ea910f70d3d/41598_2024_75748_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/692b/11511854/1bd11b30a0ad/41598_2024_75748_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/692b/11511854/3f6ce5771b13/41598_2024_75748_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/692b/11511854/e06446bcc1be/41598_2024_75748_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/692b/11511854/b8ad3cf1b405/41598_2024_75748_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/692b/11511854/405e1f9ef5c6/41598_2024_75748_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/692b/11511854/bac4b6e18e6d/41598_2024_75748_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/692b/11511854/5de2c59000af/41598_2024_75748_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/692b/11511854/3ea910f70d3d/41598_2024_75748_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/692b/11511854/1bd11b30a0ad/41598_2024_75748_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/692b/11511854/3f6ce5771b13/41598_2024_75748_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/692b/11511854/e06446bcc1be/41598_2024_75748_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/692b/11511854/b8ad3cf1b405/41598_2024_75748_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/692b/11511854/405e1f9ef5c6/41598_2024_75748_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/692b/11511854/bac4b6e18e6d/41598_2024_75748_Fig8_HTML.jpg

相似文献

[1]
Periapical lesion detection in periapical radiographs using the latest convolutional neural network ConvNeXt and its integrated models.

Sci Rep. 2024-10-25

[2]
CheXLocNet: Automatic localization of pneumothorax in chest radiographs using deep convolutional neural networks.

PLoS One. 2020

[3]
Multi-modal deep learning for automated assembly of periapical radiographs.

J Dent. 2023-8

[4]
Brain tumor segmentation and detection in MRI using convolutional neural networks and VGG16.

Cancer Biomark. 2025-3

[5]
Dental disease detection on periapical radiographs based on deep convolutional neural networks.

Int J Comput Assist Radiol Surg. 2021-4

[6]
Performance of a convolutional neural network algorithm for tooth detection and numbering on periapical radiographs.

Dentomaxillofac Radiol. 2022-3-1

[7]
Automated classification of panoramic radiographs with inflammatory periapical lesions using a CNN-LSTM architecture.

J Dent. 2025-5

[8]
Tooth numbering with polygonal segmentation on periapical radiographs: an artificial intelligence study.

Clin Oral Investig. 2024-10-25

[9]
Automatic Vertical Root Fracture Detection on Intraoral Periapical Radiographs With Artificial Intelligence-Based Image Enhancement.

Dent Traumatol. 2025-6

[10]
Performance comparison of multifarious deep networks on caries detection with tooth X-ray images.

J Dent. 2024-5

引用本文的文献

[1]
Explainable CNN-Radiomics Fusion and Ensemble Learning for Multimodal Lesion Classification in Dental Radiographs.

Diagnostics (Basel). 2025-8-9

[2]
Application of ConvNeXt with transfer learning and data augmentation for malaria parasite detection in resource-limited settings using microscopic images.

PLoS One. 2025-6-4

[3]
A visualization system for intelligent diagnosis and statistical analysis of oral diseases based on panoramic radiography.

Sci Rep. 2025-5-25

[4]
Artificial Intelligence in Dentistry: A Narrative Review of Diagnostic and Therapeutic Applications.

Med Sci Monit. 2025-4-8

本文引用的文献

[1]
Evaluating a Periapical Lesion Detection CNN on a Clinically Representative CBCT Dataset-A Validation Study.

J Clin Med. 2023-12-29

[2]
Clinically Oriented CBCT Periapical Lesion Evaluation via 3D CNN Algorithm.

J Dent Res. 2024-1

[3]
Deep learning-based apical lesion segmentation from panoramic radiographs.

Imaging Sci Dent. 2022-12

[4]
A U-Net Approach to Apical Lesion Segmentation on Panoramic Radiographs.

Biomed Res Int. 2022

[5]
Dental disease detection on periapical radiographs based on deep convolutional neural networks.

Int J Comput Assist Radiol Surg. 2021-4

[6]
Artificial Intelligence for Fast and Accurate 3-Dimensional Tooth Segmentation on Cone-beam Computed Tomography.

J Endod. 2021-5

[7]
Developments, application, and performance of artificial intelligence in dentistry - A systematic review.

J Dent Sci. 2021-1

[8]
Automated feature detection in dental periapical radiographs by using deep learning.

Oral Surg Oral Med Oral Pathol Oral Radiol. 2021-6

[9]
Diagnostic accuracy of panoramic radiography and ultrasonography in detecting periapical lesions using periapical radiography as a gold standard.

Dentomaxillofac Radiol. 2020-5-26

[10]
Artificial Intelligence for the Computer-aided Detection of Periapical Lesions in Cone-beam Computed Tomographic Images.

J Endod. 2020-5-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索