School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China.
Department of Endodontics, Central Laboratory, Jinan Stamotological Hospital, Jinan Key Laboratory of Oral Tissue Regeneration, Shandong Provincial Health Commission Key Laboratory of Oral Diseases and Tissue Regeneration, Jinan, 250001, Shandong Province, China.
Sci Rep. 2024 Oct 25;14(1):25429. doi: 10.1038/s41598-024-75748-9.
To overcome the limitation of a single classification model's inability to simultaneously identify multiple lesion targets within periapical radiographs, This study proposes YoCNET (Yolov5 + ConvNeXt), a novel deep learning integrated model. YoCNET leverages the target detection capability of Yolov5 and the image classification capability of ConvNeXt to achieve automatic segmentation of individual teeth and concurrent detection of periapical lesions across multiple teeth. A dataset of 1,305 periapical radiographs was used to train and validate the ConvNeXt and ResNet34 models, with an 8:2 split for training and validation. Deciduous teeth were excluded from the dataset. Furthermore, 717 individual teeth images were extracted from 200 previously unused periapical radiographs for integrated model validation. Evaluation metrics included accuracy, precision, sensitivity, F1 score, AUC (Area Under Curve), and a confusion matrix.The YoCNET integrated model demonstrated values of 90.93%, 98.88%, 85.30%, 0.9159, and 0.9757 for accuracy, precision, sensitivity, F1 score, and AUC, respectively. These metrics were superior to those achieved by the YoRNET (Yolov5 + ResNet34) integrated model, which recorded 80.47%, 83.78%, 82.16%, 0.8296, and 0.8822. The integrated model achieved high accuracy and efficiency in automatic teeh segmentation by Yolov5 and in automatically detecting multiple periapical lesions by ConvNeXt. YoCNET exhibited superior overall data performance, making it a more suitable deep learning integrated model for clinical applications.
为了克服单个分类模型无法同时识别根尖片中多个病变目标的局限性,本研究提出了 YoCNET(Yolov5+ConvNeXt),这是一种新颖的深度学习集成模型。YoCNET 利用了 Yolov5 的目标检测能力和 ConvNeXt 的图像分类能力,实现了单个牙齿的自动分割和多个牙齿的根尖病变的同时检测。使用了一个包含 1305 张根尖片的数据集来训练和验证 ConvNeXt 和 ResNet34 模型,训练和验证的比例为 8:2。该数据集排除了乳牙。此外,从 200 张以前未使用过的根尖片中提取了 717 张单个牙齿图像,用于集成模型验证。评估指标包括准确性、精度、敏感性、F1 分数、AUC(曲线下面积)和混淆矩阵。YoCNET 集成模型的准确性、精度、敏感性、F1 分数和 AUC 分别为 90.93%、98.88%、85.30%、0.9159 和 0.9757。这些指标优于 YoRNET(Yolov5+ResNet34)集成模型的 80.47%、83.78%、82.16%、0.8296 和 0.8822。YoCNET 模型通过 Yolov5 实现了自动牙齿分割的高精度和高效率,通过 ConvNeXt 实现了多个根尖病变的自动检测。YoCNET 表现出了优越的整体数据性能,使其成为更适合临床应用的深度学习集成模型。
Int J Comput Assist Radiol Surg. 2021-4
Dentomaxillofac Radiol. 2022-3-1
Clin Oral Investig. 2024-10-25
Diagnostics (Basel). 2025-8-9
Imaging Sci Dent. 2022-12
Biomed Res Int. 2022
Int J Comput Assist Radiol Surg. 2021-4
Oral Surg Oral Med Oral Pathol Oral Radiol. 2021-6