文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

以真菌为模型比较CdSe/ZnS和碳量子点用于分子追踪的毒性及细胞摄取情况。

Comparison of Toxicity and Cellular Uptake of CdSe/ZnS and Carbon Quantum Dots for Molecular Tracking Using as a Fungal Model.

作者信息

Färkkilä Sanni M A, Mortimer Monika, Jaaniso Raivo, Kahru Anne, Kiisk Valter, Kikas Arvo, Kozlova Jekaterina, Kurvet Imbi, Mäeorg Uno, Otsus Maarja, Kasemets Kaja

机构信息

Institute of Ecology and Earth Sciences, University of Tartu, Juhan Liivi 2, 50409 Tartu, Estonia.

Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.

出版信息

Nanomaterials (Basel). 2023 Dec 19;14(1):10. doi: 10.3390/nano14010010.


DOI:10.3390/nano14010010
PMID:38202465
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10781119/
Abstract

Plant resource sharing mediated by mycorrhizal fungi has been a subject of recent debate, largely owing to the limitations of previously used isotopic tracking methods. Although CdSe/ZnS quantum dots (QDs) have been successfully used for in situ tracking of essential nutrients in plant-fungal systems, the Cd-containing QDs, due to the intrinsic toxic nature of Cd, are not a viable system for larger-scale in situ studies. We synthesized amino acid-based carbon quantum dots (CQDs; average hydrodynamic size 6 ± 3 nm, zeta potential -19 ± 12 mV) and compared their toxicity and uptake with commercial CdSe/ZnS QDs that we conjugated with the amino acid cysteine (Cys) (average hydrodynamic size 308 ± 150 nm, zeta potential -65 ± 4 mV) using yeast as a proxy for mycorrhizal fungi. We showed that the CQDs readily entered yeast cells and were non-toxic up to 100 mg/L. While the Cys-conjugated CdSe/ZnS QDs were also not toxic to yeast cells up to 100 mg/L, they were not taken up into the cells but remained on the cell surfaces. These findings suggest that CQDs may be a suitable tool for molecular tracking in fungi (incl. mychorrhizal fungi) due to their ability to enter fungal cells.

摘要

由菌根真菌介导的植物资源共享一直是近期争论的焦点,这主要归因于先前使用的同位素追踪方法的局限性。尽管CdSe/ZnS量子点(QDs)已成功用于原位追踪植物-真菌系统中的必需营养物质,但由于镉的内在毒性,含镉量子点并非大规模原位研究的可行系统。我们合成了基于氨基酸的碳量子点(CQDs;平均流体动力学尺寸6±3nm,zeta电位-19±12mV),并使用酵母作为菌根真菌的替代物,将其毒性和摄取情况与我们用氨基酸半胱氨酸(Cys)缀合的商业CdSe/ZnS QDs(平均流体动力学尺寸308±150nm,zeta电位-65±4mV)进行了比较。我们发现,CQDs很容易进入酵母细胞,在高达100mg/L的浓度下无毒。虽然Cys缀合的CdSe/ZnS QDs在高达100mg/L的浓度下对酵母细胞也无毒,但它们没有被细胞摄取,而是留在细胞表面。这些发现表明,由于CQDs能够进入真菌细胞,它们可能是用于真菌(包括菌根真菌)分子追踪的合适工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1644/10781119/34c169a0f392/nanomaterials-14-00010-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1644/10781119/758803e73223/nanomaterials-14-00010-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1644/10781119/3d71eda75b59/nanomaterials-14-00010-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1644/10781119/267ac0724933/nanomaterials-14-00010-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1644/10781119/28b620f90439/nanomaterials-14-00010-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1644/10781119/fb731fb7a8d7/nanomaterials-14-00010-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1644/10781119/29ac023a504e/nanomaterials-14-00010-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1644/10781119/ff9eddd7554c/nanomaterials-14-00010-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1644/10781119/34c169a0f392/nanomaterials-14-00010-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1644/10781119/758803e73223/nanomaterials-14-00010-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1644/10781119/3d71eda75b59/nanomaterials-14-00010-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1644/10781119/267ac0724933/nanomaterials-14-00010-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1644/10781119/28b620f90439/nanomaterials-14-00010-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1644/10781119/fb731fb7a8d7/nanomaterials-14-00010-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1644/10781119/29ac023a504e/nanomaterials-14-00010-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1644/10781119/ff9eddd7554c/nanomaterials-14-00010-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1644/10781119/34c169a0f392/nanomaterials-14-00010-g008.jpg

相似文献

[1]
Comparison of Toxicity and Cellular Uptake of CdSe/ZnS and Carbon Quantum Dots for Molecular Tracking Using as a Fungal Model.

Nanomaterials (Basel). 2023-12-19

[2]
The interactions between CdSe quantum dots and yeast Saccharomyces cerevisiae: adhesion of quantum dots to the cell surface and the protection effect of ZnS shell.

Chemosphere. 2014-4-21

[3]
Transcriptome Profile Alteration with Cadmium Selenide/Zinc Sulfide Quantum Dots in .

Biomolecules. 2019-10-25

[4]
Mitigating the toxic effects of CdSe quantum dots towards freshwater alga Scenedesmus obliquus: Role of eco-corona.

Environ Pollut. 2021-2-1

[5]
Cellular uptake, elimination and toxicity of CdSe/ZnS quantum dots in HepG2 cells.

Biomaterials. 2013-9-5

[6]
The Impact of Cadmium Selenide Zinc Sulfide Quantum Dots on the Proteomic Profile of .

Int J Mol Sci. 2023-11-15

[7]
The cytotoxicities in prokaryote and eukaryote varied for CdSe and CdSe/ZnS quantum dots and differed from cadmium ions.

Ecotoxicol Environ Saf. 2019-6-13

[8]
Effects of CdSe and CdSe/ZnS Core/Shell Quantum Dots on Singlet Oxygen Production and Cell Toxicity.

J Nanosci Nanotechnol. 2018-3-1

[9]
Alleviating the toxicity of quantum dots to Phanerochaete chrysosporium by sodium hydrosulfide and cysteine.

Environ Sci Pollut Res Int. 2020-1-18

[10]
Cancer Cell Targeting Using Folic Acid/Anti-HER2 Antibody Conjugated Fluorescent CdSe/CdS/ZnS-Mercaptopropionic Acid and CdTe-Mercaptosuccinic Acid Quantum Dots.

J Nanosci Nanotechnol. 2016-1

引用本文的文献

[1]
Carbon Dots as an Emergent Class of Sustainable Antifungal Agents.

ACS Nano. 2025-7-15

[2]
Cytotoxicity of Quantum Dots in Receptor-Mediated Endocytic and Pinocytic Pathways in Yeast.

Int J Mol Sci. 2024-4-26

本文引用的文献

[1]
Mother trees, altruistic fungi, and the perils of plant personification.

Trends Plant Sci. 2024-1

[2]
Cadmium Sulfide Quantum Dots, Mitochondrial Function and Environmental Stress: A Mechanistic Reconstruction through In Vivo Cellular Approaches in .

Nanomaterials (Basel). 2023-6-26

[3]
Re-examining the evidence for the mother tree hypothesis - resource sharing among trees via ectomycorrhizal networks.

New Phytol. 2023-7

[4]
Positive citation bias and overinterpreted results lead to misinformation on common mycorrhizal networks in forests.

Nat Ecol Evol. 2023-4

[5]
Red CdSe/ZnS QDs' Intracellular Trafficking and Its Impact on Yeast Polarization and Actin Filament.

Cells. 2023-2-2

[6]
A review on carbon quantum dots: Synthesis, photoluminescence mechanisms and applications.

Luminescence. 2022-10

[7]
Cadmium Sulfide Quantum Dots Adversely Affect Gametogenesis in .

Nanomaterials (Basel). 2022-6-27

[8]
High-quality full-color carbon quantum dots synthesized under an unprecedentedly mild condition.

iScience. 2022-5-18

[9]
Response surface methodology optimization for the synthesis of N, S-codoped carbon dots and its application for tetracyclines detection.

Chemosphere. 2022-9

[10]
Induction of autophagy and endoplasmic reticulum autophagy caused by cadmium telluride quantum dots are protective mechanisms of yeast cell.

J Appl Toxicol. 2022-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索