Färkkilä Sanni M A, Mortimer Monika, Jaaniso Raivo, Kahru Anne, Kiisk Valter, Kikas Arvo, Kozlova Jekaterina, Kurvet Imbi, Mäeorg Uno, Otsus Maarja, Kasemets Kaja
Institute of Ecology and Earth Sciences, University of Tartu, Juhan Liivi 2, 50409 Tartu, Estonia.
Laboratory of Environmental Toxicology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
Nanomaterials (Basel). 2023 Dec 19;14(1):10. doi: 10.3390/nano14010010.
Plant resource sharing mediated by mycorrhizal fungi has been a subject of recent debate, largely owing to the limitations of previously used isotopic tracking methods. Although CdSe/ZnS quantum dots (QDs) have been successfully used for in situ tracking of essential nutrients in plant-fungal systems, the Cd-containing QDs, due to the intrinsic toxic nature of Cd, are not a viable system for larger-scale in situ studies. We synthesized amino acid-based carbon quantum dots (CQDs; average hydrodynamic size 6 ± 3 nm, zeta potential -19 ± 12 mV) and compared their toxicity and uptake with commercial CdSe/ZnS QDs that we conjugated with the amino acid cysteine (Cys) (average hydrodynamic size 308 ± 150 nm, zeta potential -65 ± 4 mV) using yeast as a proxy for mycorrhizal fungi. We showed that the CQDs readily entered yeast cells and were non-toxic up to 100 mg/L. While the Cys-conjugated CdSe/ZnS QDs were also not toxic to yeast cells up to 100 mg/L, they were not taken up into the cells but remained on the cell surfaces. These findings suggest that CQDs may be a suitable tool for molecular tracking in fungi (incl. mychorrhizal fungi) due to their ability to enter fungal cells.
由菌根真菌介导的植物资源共享一直是近期争论的焦点,这主要归因于先前使用的同位素追踪方法的局限性。尽管CdSe/ZnS量子点(QDs)已成功用于原位追踪植物-真菌系统中的必需营养物质,但由于镉的内在毒性,含镉量子点并非大规模原位研究的可行系统。我们合成了基于氨基酸的碳量子点(CQDs;平均流体动力学尺寸6±3nm,zeta电位-19±12mV),并使用酵母作为菌根真菌的替代物,将其毒性和摄取情况与我们用氨基酸半胱氨酸(Cys)缀合的商业CdSe/ZnS QDs(平均流体动力学尺寸308±150nm,zeta电位-65±4mV)进行了比较。我们发现,CQDs很容易进入酵母细胞,在高达100mg/L的浓度下无毒。虽然Cys缀合的CdSe/ZnS QDs在高达100mg/L的浓度下对酵母细胞也无毒,但它们没有被细胞摄取,而是留在细胞表面。这些发现表明,由于CQDs能够进入真菌细胞,它们可能是用于真菌(包括菌根真菌)分子追踪的合适工具。
Nanomaterials (Basel). 2023-12-19
Biomolecules. 2019-10-25
Biomaterials. 2013-9-5
Int J Mol Sci. 2023-11-15
Ecotoxicol Environ Saf. 2019-6-13
J Nanosci Nanotechnol. 2018-3-1
Environ Sci Pollut Res Int. 2020-1-18
ACS Nano. 2025-7-15
Int J Mol Sci. 2024-4-26
Trends Plant Sci. 2024-1
Nanomaterials (Basel). 2022-6-27