Balakrishnan Thivyah, Sagadevan Suresh, Le Minh-Vien, Soga Tetsuo, Oh Won-Chun
Department of Chemical and Process Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia.
Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur 50603, Malaysia.
Nanomaterials (Basel). 2023 Dec 19;14(1):11. doi: 10.3390/nano14010011.
Gas-sensing technology has witnessed significant advancements that have been driven by the emergence of graphene quantum dots (GQDs) and their tailored nanocomposites. This comprehensive review surveys the recent progress made in the construction methods and applications of functionalized GQDs and GQD-based nanocomposites for gas sensing. The gas-sensing mechanisms, based on the Fermi-level control and charge carrier depletion layer theory, are briefly explained through the formation of heterojunctions and the adsorption/desorption principle. Furthermore, this review explores the enhancements achieved through the incorporation of GQDs into nanocomposites with diverse matrices, including polymers, metal oxides, and 2D materials. We also provide an overview of the key progress in various hazardous gas sensing applications using functionalized GQDs and GQD-based nanocomposites, focusing on key detection parameters such as sensitivity, selectivity, stability, response and recovery time, repeatability, and limit of detection (LOD). According to the most recent data, the normally reported values for the LOD of various toxic gases using GQD-based sensors are in the range of 1-10 ppm. Remarkably, some GQD-based sensors exhibit extremely low detection limits, such as N-GQDs/SnO (0.01 ppb for formaldehyde) and GQD@SnO (0.10 ppb for NO). This review provides an up-to-date perspective on the evolving landscape of functionalized GQDs and their nanocomposites as pivotal components in the development of advanced gas sensors.
随着石墨烯量子点(GQDs)及其定制纳米复合材料的出现,气体传感技术取得了重大进展。这篇综述全面调查了功能化GQDs及其基纳米复合材料在气体传感构建方法和应用方面的最新进展。基于费米能级控制和电荷载流子耗尽层理论的气敏机制,通过异质结的形成和吸附/解吸原理进行了简要解释。此外,本综述探讨了通过将GQDs掺入具有不同基质的纳米复合材料(包括聚合物、金属氧化物和二维材料)中所实现的增强效果。我们还概述了使用功能化GQDs及其基纳米复合材料在各种有害气体传感应用中的关键进展,重点关注灵敏度、选择性、稳定性、响应和恢复时间、重复性以及检测限(LOD)等关键检测参数。根据最新数据,使用基于GQD的传感器对各种有毒气体的LOD通常报告值在1-10 ppm范围内。值得注意的是,一些基于GQD的传感器表现出极低的检测限,如N-GQDs/SnO(对甲醛为0.01 ppb)和GQD@SnO(对NO为0.10 ppb)。本综述提供了关于功能化GQDs及其纳米复合材料作为先进气体传感器发展中关键组件的不断演变格局的最新观点。