Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia.
Physics Department, Belarusian State University, 220030 Minsk, Belarus.
Molecules. 2023 Dec 22;29(1):82. doi: 10.3390/molecules29010082.
Optical methods (spectroscopy, spectrofluorometry, dynamic light scattering, and refractometry) were used to study the change in the state of hen egg-white lysozyme (HEWL), protein molecules, and gold nanoparticles (AuNPs) in aqueous colloids with changes in pH, and the interaction of protein molecules with nanoparticles was also studied. It was shown that changing pH may be the easiest way to control the protein corona on gold nanoparticles. In a colloid of nanoparticles, both in the presence and absence of protein, aggregation-deaggregation, and in a protein colloid, monomerization-dimerization-aggregation are the main processes when pH is changed. A specific point at pH 7.5, where a transition of the colloidal system from one state to another is observed, has been found using all the optical methods mentioned. It has been shown that gold nanoparticles can stabilize HEWL protein molecules at alkaline pH while maintaining enzymatic activity, which can be used in practice. The data obtained in this manuscript allow for the state of HEWL colloids and gold nanoparticles to be monitored using one or two simple and accessible optical methods.
光学方法(光谱学、荧光光谱法、动态光散射和折射法)用于研究在 pH 值变化时,蛋清溶菌酶(HEWL)、蛋白质分子和金纳米粒子(AuNPs)在水胶体中的状态变化,以及蛋白质分子与纳米粒子的相互作用。结果表明,改变 pH 值可能是控制金纳米粒子上蛋白质冠的最简单方法。在纳米粒子胶体中,无论是存在蛋白质还是不存在蛋白质,聚集-解聚集,以及在蛋白质胶体中,单体化-二聚化-聚集都是 pH 值变化时的主要过程。使用所有提到的光学方法,在 pH 值 7.5 的特定点发现了胶体系统从一种状态向另一种状态的转变。已经表明,金纳米粒子可以在碱性 pH 值下稳定 HEWL 蛋白质分子,同时保持酶活性,这在实际中可能得到应用。本手稿中的数据允许使用一种或两种简单且易于获得的光学方法来监测 HEWL 胶体和金纳米粒子的状态。