Suppr超能文献

用于光学数据存储的功能材料的最新进展

Recent Advances in Functional Materials for Optical Data Storage.

作者信息

Dai Dihua, Zhang Yong, Yang Siwen, Kong Weicheng, Yang Jie, Zhang Jijun

机构信息

China Hualu Group Co., Ltd., 717 Huangpu Road, Dalian 116023, China.

School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China.

出版信息

Molecules. 2024 Jan 3;29(1):254. doi: 10.3390/molecules29010254.

Abstract

In the current data age, the fundamental research related to optical applications has been rapidly developed. Countless new-born materials equipped with distinct optical properties have been widely explored, exhibiting tremendous values in practical applications. The optical data storage technique is one of the most significant topics of the optical applications, which is considered as the prominent solution for conquering the challenge of the explosive increase in mass data, to achieve the long-life, low-energy, and super high-capacity data storage. On this basis, our review outlines the representative reports for mainly introducing the functional systems based on the newly established materials applied in the optical storage field. According to the material categories, the representative functional systems are divided into rare-earth doped nanoparticles, graphene, and diarylethene. In terms of the difference of structural features and delicate properties among the three materials, the application in optical storage is comprehensively illustrated in the review. Meanwhile, the potential opportunities and critical challenges of optical storage are also discussed in detail.

摘要

在当前的数据时代,与光学应用相关的基础研究得到了迅速发展。无数具有独特光学性质的新型材料被广泛探索,在实际应用中展现出巨大价值。光学数据存储技术是光学应用中最重要的主题之一,它被视为应对海量数据爆炸式增长挑战的突出解决方案,以实现长寿命、低能耗和超高容量的数据存储。在此基础上,我们的综述概述了主要介绍应用于光存储领域的基于新制备材料的功能体系的代表性报告。根据材料类别,代表性功能体系分为稀土掺杂纳米粒子、石墨烯和二芳基乙烯。针对这三种材料结构特征和精细性质的差异,综述全面阐述了它们在光存储中的应用。同时,还详细讨论了光存储的潜在机遇和关键挑战。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/56fc/10780730/5b9fe87521d5/molecules-29-00254-sch001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验