Luong Huynh Van, Deligiannis Nikos, Wilhelm Roman, Drapp Bernd
AP Sensing GmbH, Herrenberger Str. 130, 71034 Böblingen, Germany.
Department of Electronics and Informatics, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
Sensors (Basel). 2023 Dec 21;24(1):49. doi: 10.3390/s24010049.
This paper studies an advanced machine learning method, specifically few-shot classification with meta-learning, applied to distributed acoustic sensing (DAS) data. The study contributes two key aspects: (i) an investigation of different pre-processing methods for DAS data and (ii) the implementation of a neural network model based on meta-learning to learn a representation of the processed data. In the context of urban infrastructure monitoring, we develop a few-shot classification framework that classifies query samples with only a limited number of support samples. The model consists of an embedding network trained on a meta dataset for feature extraction and is followed by a classifier for performing few-shot classification. This research thoroughly explores three types of data pre-processing, that is, decomposed phase, power spectral density, and frequency energy band, as inputs to the neural network. Experimental results show the efficient learning capabilities of the embedding model when working with various pre-processed data, offering a range of pre-processing options. Furthermore, the results demonstrate outstanding few-shot classification performance across a large number of event classes, highlighting the framework's potential for urban infrastructure monitoring applications.
本文研究了一种先进的机器学习方法,具体而言是应用于分布式声学传感(DAS)数据的基于元学习的少样本分类。该研究有两个关键贡献:(i)对DAS数据的不同预处理方法进行研究,以及(ii)基于元学习实现一个神经网络模型,以学习处理后数据的表示。在城市基础设施监测的背景下,我们开发了一个少样本分类框架,该框架仅使用有限数量的支持样本对查询样本进行分类。该模型由一个在元数据集上训练以进行特征提取的嵌入网络组成,随后是一个用于执行少样本分类的分类器。本研究全面探索了三种类型的数据预处理,即分解相位、功率谱密度和频率能量带,作为神经网络的输入。实验结果表明,嵌入模型在处理各种预处理数据时具有高效的学习能力,提供了一系列预处理选项。此外,结果表明在大量事件类别上具有出色的少样本分类性能,突出了该框架在城市基础设施监测应用中的潜力。