Suppr超能文献

使用图扩散模型的分布式声学传感中的时空异常检测

Spatiotemporal Anomaly Detection in Distributed Acoustic Sensing Using a GraphDiffusion Model.

作者信息

Jeong Seunghun, Kim Huioon, Kim Young Ho, Park Chang-Soo, Jung Hyoyoung, Kim Hong Kook

机构信息

Department of AI Convergence, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.

Korea Photonic Technology Institute, Gwangju 61007, Republic of Korea.

出版信息

Sensors (Basel). 2025 Aug 19;25(16):5157. doi: 10.3390/s25165157.

Abstract

Distributed acoustic sensing (DAS), which can provide dense spatial and temporal measurements using optical fibers, is quickly becoming critical for large-scale infrastructure monitoring. However, anomaly detection in DAS data is still challenging owing to the spatial correlations between sensing channels and nonlinear temporal dynamics. Recent approaches often disregard the explicit sensor layout and instead handle DAS data as two-dimensional images or flattened sequences, eliminating the spatial topology. This work proposes GraphDiffusion, a novel generative anomaly-detection model that combines a conditional denoising diffusion probabilistic model (DDPM) and a graph neural network (GNN) to overcome these limitations. By treating each channel as a graph node and building edges based on Euclidean proximity, the GNN explicitly models the spatial arrangement of DAS sensors, allowing the network to capture local interchannel dependencies. The conditional DDPM uses iterative denoising to model the temporal dynamics of standard signals, enabling the system to detect deviations without the need for anomalies. The performance evaluations based on real-world DAS datasets reveal that GraphDiffusion achieves 98.2% and 98.0% based on the area under the curve (AUC) of the F1-score at different levels (F1-AUC), an AUC of receiver operating characteristic (ROC) at different levels (ROC-AUC), outperforming other comparative models.

摘要

分布式声学传感(DAS)能够利用光纤提供密集的空间和时间测量,对于大规模基础设施监测正迅速变得至关重要。然而,由于传感通道之间的空间相关性和非线性时间动态特性,DAS数据中的异常检测仍然具有挑战性。最近的方法通常忽略明确的传感器布局,而是将DAS数据当作二维图像或展平的序列来处理,从而消除了空间拓扑结构。这项工作提出了GraphDiffusion,这是一种新颖的生成式异常检测模型,它结合了条件去噪扩散概率模型(DDPM)和图神经网络(GNN)来克服这些限制。通过将每个通道视为一个图节点,并基于欧几里得距离构建边,GNN明确地对DAS传感器的空间排列进行建模,使网络能够捕捉局部通道间的依赖性。条件DDPM使用迭代去噪来对标准信号的时间动态进行建模,使系统能够在无需异常样本的情况下检测偏差。基于真实世界DAS数据集的性能评估表明,GraphDiffusion在不同级别(F1-AUC)的F1分数曲线下面积以及不同级别(ROC-AUC)的接收器操作特征(ROC)曲线下面积方面分别达到了98.2%和98.0%,优于其他对比模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a27/12389971/c9f79eb5f1dc/sensors-25-05157-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验