Suppr超能文献

机械手系统手眼标定的重投影误差分析与算法优化

Reprojection Error Analysis and Algorithm Optimization of Hand-Eye Calibration for Manipulator System.

作者信息

Peng Gang, Ren Zhenyu, Gao Qiang, Fan Zhun

机构信息

School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China.

Key Laboratory of Image Processing and Intelligent Control, Ministry of Education, Wuhan 430074, China.

出版信息

Sensors (Basel). 2023 Dec 25;24(1):113. doi: 10.3390/s24010113.

Abstract

The Euclidean distance error of calibration results cannot be calculated during the hand-eye calibration process of a manipulator because the true values of the hand-eye conversion matrix cannot be obtained. In this study, a new method for error analysis and algorithm optimization is presented. An error analysis of the method is carried out using a priori knowledge that the location of the augmented reality markers is fixed during the calibration process. The coordinates of the AR marker center point are reprojected onto the pixel coordinate system and then compared with the true pixel coordinates of the AR marker center point obtained by corner detection or manual labeling to obtain the Euclidean distance between the two coordinates as the basis for the error analysis. We then fine-tune the results of the hand-eye calibration algorithm to obtain the smallest reprojection error, thereby obtaining higher-precision calibration results. The experimental results show that, compared with the Tsai-Lenz algorithm, the optimized algorithm in this study reduces the average reprojection error by 44.43% and the average visual positioning error by 50.63%. Therefore, the proposed optimization method can significantly improve the accuracy of hand-eye calibration results.

摘要

在机械手的手眼标定过程中,由于无法获得手眼转换矩阵的真值,因此无法计算标定结果的欧几里得距离误差。在本研究中,提出了一种新的误差分析和算法优化方法。利用增强现实标记在校准过程中位置固定的先验知识,对该方法进行误差分析。将AR标记中心点的坐标重新投影到像素坐标系中,然后与通过角点检测或手动标注得到的AR标记中心点的真实像素坐标进行比较,得到两个坐标之间的欧几里得距离,作为误差分析的依据。然后,我们对手眼标定算法的结果进行微调,以获得最小的重投影误差,从而获得更高精度的标定结果。实验结果表明,与Tsai-Lenz算法相比,本研究中的优化算法将平均重投影误差降低了44.43%,平均视觉定位误差降低了50.63%。因此,所提出的优化方法可以显著提高手眼标定结果的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/132a/10780872/aced28cc1507/sensors-24-00113-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验