Huang Jiachun, Liu Shaoli, Liu Jianhua, Jian Zehua
Opt Express. 2024 May 20;32(11):18453-18471. doi: 10.1364/OE.516126.
Camera calibration is very important when planning machine vision tasks. Calibration may involve 3D reconstruction, size measurement, or careful target positioning. Calibration accuracy directly affects the accuracy of machine vision. The parameters in many image distortion models are usually applied to all image pixels. However, this may be associated with rather high pixel reprojection errors at image edges, compromising camera calibration accuracy. In this paper, we present a new camera calibration optimization algorithm that features a step function that splits images into center and edge regions. First, based on the increasing pixel reprojection errors according to the pixel distance away from the image center, we gave a flexible method to divide an image into two regions, center and boundary. Then, the algorithm automatically determines the step position, and the calibration model is rebuilt. The new model can calibrate the distortions at the center and boundary regions separately. Optimized by the method, the number of distortion parameters in the old model is doubled, and different parameters represent different distortions within two regions. In this way, our method can optimize traditional calibration models, which define a global model to describe the distortion of the whole image and get a higher calibration accuracy. Experimentally, the method significantly improved pixel reprojection accuracy, particularly at image edges. Simulations revealed that our method was more flexible than traditional methods.
在规划机器视觉任务时,相机校准非常重要。校准可能涉及三维重建、尺寸测量或精确的目标定位。校准精度直接影响机器视觉的精度。许多图像畸变模型中的参数通常应用于所有图像像素。然而,这可能会在图像边缘产生相当高的像素重投影误差,从而影响相机校准精度。在本文中,我们提出了一种新的相机校准优化算法,该算法具有一个阶跃函数,可将图像分为中心区域和边缘区域。首先,根据像素与图像中心距离增加时像素重投影误差增大的情况,我们给出了一种灵活的方法将图像分为中心和边界两个区域。然后,该算法自动确定阶跃位置,并重建校准模型。新模型可以分别校准中心区域和边界区域的畸变。通过该方法优化后,旧模型中的畸变参数数量增加了一倍,不同的参数代表两个区域内不同的畸变。通过这种方式,我们的方法可以优化传统校准模型,传统校准模型定义一个全局模型来描述整个图像的畸变,从而获得更高的校准精度。实验表明,该方法显著提高了像素重投影精度,尤其是在图像边缘。模拟结果表明,我们的方法比传统方法更灵活。