文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于机器学习的面部感兴趣区域自动分割和应激检测。

Automatic Segmentation of Facial Regions of Interest and Stress Detection Using Machine Learning.

机构信息

Laboratory of Artificial Vision and Thermography/Mechatronics, Faculty of Engineering, Autonomous University of Queretaro, Campus San Juan del Rio, San Juan del Rio 76807, Mexico.

Postgraduate Studies Division, Psychology Faculty, National Autonomous University of Mexico, Mexico City 04510, Mexico.

出版信息

Sensors (Basel). 2023 Dec 27;24(1):152. doi: 10.3390/s24010152.


DOI:10.3390/s24010152
PMID:38203013
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10781318/
Abstract

Stress is a factor that affects many people today and is responsible for many of the causes of poor quality of life. For this reason, it is necessary to be able to determine whether a person is stressed or not. Therefore, it is necessary to develop tools that are non-invasive, innocuous, and easy to use. This paper describes a methodology for classifying stress in humans by automatically detecting facial regions of interest in thermal images using machine learning during a short Trier Social Stress Test. Five regions of interest, namely the nose, right cheek, left cheek, forehead, and chin, are automatically detected. The temperature of each of these regions is then extracted and used as input to a classifier, specifically a Support Vector Machine, which outputs three states: baseline, stressed, and relaxed. The proposal was developed and tested on thermal images of 25 participants who were subjected to a stress-inducing protocol followed by relaxation techniques. After testing the developed methodology, an accuracy of 95.4% and an error rate of 4.5% were obtained. The methodology proposed in this study allows the automatic classification of a person's stress state based on a thermal image of the face. This represents an innovative tool applicable to specialists. Furthermore, due to its robustness, it is also suitable for online applications.

摘要

压力是当今影响许多人的一个因素,也是导致许多生活质量下降的原因之一。因此,有必要能够确定一个人是否有压力。因此,有必要开发非侵入性、无害且易于使用的工具。本文描述了一种通过在短时间的特里尔社会压力测试中使用机器学习自动检测热图像中的面部感兴趣区域来对人类压力进行分类的方法。自动检测五个感兴趣区域,即鼻子、右脸颊、左脸颊、额头和下巴。然后提取每个区域的温度,并将其用作分类器的输入,特别是支持向量机,该分类器输出三种状态:基线、压力和放松。该提案是在 25 名参与者的热图像上开发和测试的,这些参与者接受了压力诱导协议,然后接受了放松技术。在测试所开发的方法后,获得了 95.4%的准确率和 4.5%的错误率。本研究提出的方法允许根据面部的热图像自动分类一个人的压力状态。这是一种适用于专家的创新工具。此外,由于其稳健性,它也适用于在线应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aabb/10781318/cfc99698c1c4/sensors-24-00152-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aabb/10781318/4814a06c4807/sensors-24-00152-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aabb/10781318/af2d4ba142f0/sensors-24-00152-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aabb/10781318/3fd839fc2316/sensors-24-00152-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aabb/10781318/de737e9d6e1a/sensors-24-00152-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aabb/10781318/9ce0111e9c57/sensors-24-00152-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aabb/10781318/e405ac58b6f3/sensors-24-00152-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aabb/10781318/f03c1074ed4e/sensors-24-00152-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aabb/10781318/719023b53dc9/sensors-24-00152-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aabb/10781318/c25cf6be70ce/sensors-24-00152-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aabb/10781318/cfc99698c1c4/sensors-24-00152-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aabb/10781318/4814a06c4807/sensors-24-00152-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aabb/10781318/af2d4ba142f0/sensors-24-00152-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aabb/10781318/3fd839fc2316/sensors-24-00152-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aabb/10781318/de737e9d6e1a/sensors-24-00152-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aabb/10781318/9ce0111e9c57/sensors-24-00152-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aabb/10781318/e405ac58b6f3/sensors-24-00152-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aabb/10781318/f03c1074ed4e/sensors-24-00152-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aabb/10781318/719023b53dc9/sensors-24-00152-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aabb/10781318/c25cf6be70ce/sensors-24-00152-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aabb/10781318/cfc99698c1c4/sensors-24-00152-g010.jpg

相似文献

[1]
Automatic Segmentation of Facial Regions of Interest and Stress Detection Using Machine Learning.

Sensors (Basel). 2023-12-27

[2]
Physiological stressor impact on peripheral facial temperature, Il-6 and mean arterial pressure, in young people.

J Therm Biol. 2020-7

[3]
Application of machine learning algorithms in thermal images for an automatic classification of lumbar sympathetic blocks.

J Therm Biol. 2023-4

[4]
Facial skin temperature and its relationship with overall thermal sensation during winter in Changsha, China.

Indoor Air. 2022-10

[5]
Automated segmentation and classification of hand thermal images in rheumatoid arthritis using machine learning algorithms: A comparison with quantum machine learning technique.

J Therm Biol. 2023-1

[6]
An automated approach to enhance the thermographic evaluation on orofacial regions in lateral facial thermograms.

J Therm Biol. 2018-1

[7]
Driver drowsiness detection using facial thermal imaging in a driving simulator.

Proc Inst Mech Eng H. 2022-1

[8]
The facial expression of schizophrenic patients applied with infrared thermal facial image sequence.

BMC Psychiatry. 2017-6-24

[9]
Full Intelligent Cancer Classification of Thermal Breast Images to Assist Physician in Clinical Diagnostic Applications.

J Med Signals Sens. 2016

[10]
Thermal infrared imaging based facial temperature in comparison to ear temperature during a real-driving scenario.

J Therm Biol. 2021-2

引用本文的文献

[1]
Development of an Artificial Vision for a Parallel Manipulator Using Machine-to-Machine Technologies.

Sensors (Basel). 2024-6-11

本文引用的文献

[1]
Stress detection and monitoring based on low-cost mobile thermography.

Procedia Comput Sci. 2021

[2]
An attempt to construct the individual model of daily facial skin temperature using variational autoencoder.

Artif Life Robot. 2021

[3]
SpeakingFaces: A Large-Scale Multimodal Dataset of Voice Commands with Visual and Thermal Video Streams.

Sensors (Basel). 2021-5-16

[4]
The Impact of Covid-19 Experiences and Associated Stress on Anxiety, Depression, and Functional Impairment in American Adults.

Cognit Ther Res. 2020

[5]
Smart Sensor Based on Biofeedback to Measure Child Relaxation in Out-of-Home Care.

Sensors (Basel). 2020-7-28

[6]
A Modular System for Detection, Tracking and Analysis of Human Faces in Thermal Infrared Recordings.

Sensors (Basel). 2019-9-24

[7]
The Trier Social Stress Test: Principles and practice.

Neurobiol Stress. 2016-11-12

[8]
A new evaluation of heat distribution on facial skin surface by infrared thermography.

Dentomaxillofac Radiol. 2016

[9]
Thermal infrared imaging in psychophysiology: potentialities and limits.

Psychophysiology. 2014-10

[10]
Thermal body patterns for healthy Brazilian adults (male and female).

J Therm Biol. 2014-3-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索