Zhao Rongchen, Xie Haifeng, Gong Xinle, Sun Xiaoqiang, Cao Chen
School of Mechanical and Electrical Engineering, Guizhou Normal University, Guiyang 550001, China.
School of Vehicle and Mobility, Tsinghua University, Beijing 10084, China.
Sensors (Basel). 2023 Dec 27;24(1):156. doi: 10.3390/s24010156.
In this paper, we present a novel robust adaptive neural network-based control framework to address the ride height tracking control problem of active air suspension systems with magnetorheological fluid damper (MRD-AAS) subject to uncertain mass and time-varying input delay. First, a radial basis function neural network (RBFNN) approximator is designed to compensate for unmodeled dynamics of the MRD. Then, a projector-based estimator is developed to estimate uncertain parameter variation (sprung mass). Additionally, to deal with the effect of input delay, a time-delay compensator is integrated in the adaptive control law to enhance the transient response of MRD-AAS system. By introducing a Lyapunov-Krasovskii (LK) functional, both ride height tracking and estimator errors can robustly converge towards the neighborhood of the desired values, achieving uniform ultimate boundness. Finally, comparative simulation results based on a dynamic co-simulator built in AMESim 2021.2 and Matlab/Simulink 2019(b) are given to illustrate the validity of the proposed control framework, showing its effectiveness to operate ride height regulation with MRD-AAS systems accurately and reliably under random road excitations.
在本文中,我们提出了一种基于新型鲁棒自适应神经网络的控制框架,以解决具有磁流变液阻尼器的主动空气悬架系统(MRD-AAS)在质量不确定和输入时变延迟情况下的行驶高度跟踪控制问题。首先,设计了一个径向基函数神经网络(RBFNN)逼近器来补偿MRD的未建模动态。然后,开发了一种基于投影器的估计器来估计不确定参数变化(簧载质量)。此外,为了处理输入延迟的影响,在自适应控制律中集成了一个时延补偿器,以增强MRD-AAS系统的瞬态响应。通过引入李雅普诺夫-克拉索夫斯基(LK)泛函,行驶高度跟踪误差和估计器误差都能鲁棒地收敛到期望值的邻域内,实现一致最终有界性。最后,给出了基于在AMESim 2021.2和Matlab/Simulink 2019(b)中构建的动态联合仿真器的对比仿真结果,以说明所提出控制框架的有效性,表明其在随机道路激励下能够准确可靠地操作MRD-AAS系统进行行驶高度调节。