Suppr超能文献

基于神经网络的磁流变液阻尼器主动空气悬架系统在质量不确定和输入延迟情况下的自适应高度跟踪控制

Neural Network-Based Adaptive Height Tracking Control of Active Air Suspension System with Magnetorheological Fluid Damper Subject to Uncertain Mass and Input Delay.

作者信息

Zhao Rongchen, Xie Haifeng, Gong Xinle, Sun Xiaoqiang, Cao Chen

机构信息

School of Mechanical and Electrical Engineering, Guizhou Normal University, Guiyang 550001, China.

School of Vehicle and Mobility, Tsinghua University, Beijing 10084, China.

出版信息

Sensors (Basel). 2023 Dec 27;24(1):156. doi: 10.3390/s24010156.

Abstract

In this paper, we present a novel robust adaptive neural network-based control framework to address the ride height tracking control problem of active air suspension systems with magnetorheological fluid damper (MRD-AAS) subject to uncertain mass and time-varying input delay. First, a radial basis function neural network (RBFNN) approximator is designed to compensate for unmodeled dynamics of the MRD. Then, a projector-based estimator is developed to estimate uncertain parameter variation (sprung mass). Additionally, to deal with the effect of input delay, a time-delay compensator is integrated in the adaptive control law to enhance the transient response of MRD-AAS system. By introducing a Lyapunov-Krasovskii (LK) functional, both ride height tracking and estimator errors can robustly converge towards the neighborhood of the desired values, achieving uniform ultimate boundness. Finally, comparative simulation results based on a dynamic co-simulator built in AMESim 2021.2 and Matlab/Simulink 2019(b) are given to illustrate the validity of the proposed control framework, showing its effectiveness to operate ride height regulation with MRD-AAS systems accurately and reliably under random road excitations.

摘要

在本文中,我们提出了一种基于新型鲁棒自适应神经网络的控制框架,以解决具有磁流变液阻尼器的主动空气悬架系统(MRD-AAS)在质量不确定和输入时变延迟情况下的行驶高度跟踪控制问题。首先,设计了一个径向基函数神经网络(RBFNN)逼近器来补偿MRD的未建模动态。然后,开发了一种基于投影器的估计器来估计不确定参数变化(簧载质量)。此外,为了处理输入延迟的影响,在自适应控制律中集成了一个时延补偿器,以增强MRD-AAS系统的瞬态响应。通过引入李雅普诺夫-克拉索夫斯基(LK)泛函,行驶高度跟踪误差和估计器误差都能鲁棒地收敛到期望值的邻域内,实现一致最终有界性。最后,给出了基于在AMESim 2021.2和Matlab/Simulink 2019(b)中构建的动态联合仿真器的对比仿真结果,以说明所提出控制框架的有效性,表明其在随机道路激励下能够准确可靠地操作MRD-AAS系统进行行驶高度调节。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88bf/10781208/b29c3d2c09ad/sensors-24-00156-g001.jpg

相似文献

3
Adaptive Finite-Time Fuzzy Control of Nonlinear Active Suspension Systems With Input Delay.
IEEE Trans Cybern. 2020 Jun;50(6):2639-2650. doi: 10.1109/TCYB.2019.2894724. Epub 2019 Feb 20.
4
Adaptive control of nonlinear uncertain active suspension systems with prescribed performance.
ISA Trans. 2015 Jan;54:145-55. doi: 10.1016/j.isatra.2014.05.025. Epub 2014 Jul 14.
5
Adaptive Fault-Tolerant Control of Uncertain Nonlinear Large-Scale Systems With Unknown Dead Zone.
IEEE Trans Cybern. 2016 Aug;46(8):1851-62. doi: 10.1109/TCYB.2015.2456028. Epub 2015 Aug 31.
6
Neural networks-based adaptive control for nonlinear time-varying delays systems with unknown control direction.
IEEE Trans Neural Netw. 2011 Oct;22(10):1599-612. doi: 10.1109/TNN.2011.2165222. Epub 2011 Aug 30.
7
Neural-Network Adaptive Output-Feedback Saturation Control for Uncertain Active Suspension Systems.
IEEE Trans Cybern. 2022 Mar;52(3):1881-1890. doi: 10.1109/TCYB.2020.3001581. Epub 2022 Mar 11.
9
Adaptive fuzzy predictive sliding control of uncertain nonlinear systems with bound-known input delay.
ISA Trans. 2015 Nov;59:314-24. doi: 10.1016/j.isatra.2015.10.010. Epub 2015 Oct 30.

引用本文的文献

本文引用的文献

1
Adaptive Finite-Time Fuzzy Control of Nonlinear Active Suspension Systems With Input Delay.
IEEE Trans Cybern. 2020 Jun;50(6):2639-2650. doi: 10.1109/TCYB.2019.2894724. Epub 2019 Feb 20.
2
Robust adaptive neural control for a class of perturbed strict feedback nonlinear systems.
IEEE Trans Neural Netw. 2002;13(6):1409-19. doi: 10.1109/TNN.2002.804306.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验