Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, P.R. China.
School of Pharmaceutical Sciences, Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P.R. China.
Biomater Sci. 2024 Feb 27;12(5):1171-1184. doi: 10.1039/d3bm01430d.
Sonodynamic therapy (SDT) has emerged as a potential alternative to traditional cancer treatments as it offers deep cellular penetration and reduced invasivity. Sonosensitizers generate reactive oxygen species (ROS) under ultrasound activation, focusing the ultrasound energy on malignant sites located deep in tissues and causing cell apoptosis and necrosis. However, due to tumor hypoxia and the limited levels of intracellular endogenous hydrogen peroxide (HO is a fundamental species for supplying oxygen catalase activity), SDT efficacy is still insufficient. In this study, a bimetallic and multifunctional system (FeO-TAPP@PVP-CaO) was prepared by using ferrosoferric oxide (FeO) as a carrier loaded with 5,10,15,20-tetrakis(4-aminophenyl), porphyrin (TAPP), that was then coated with polyvinyl pyrrolidone (PVP) and calcium peroxide (CaO). The CaO layer elevated the levels of HO and Ca in the tumor microenvironment when exposed to intracellular acidity, providing essential elements for oxygen generation. Intracellular hypoxia was alleviated the catalase-like activity of FeO inducing calcium overload. Under ultrasonic irradiation, SDT generated toxic reactive oxygen species (ROS, singlet oxygen) and activated calcium influx through acoustic cavitation. Meanwhile, calcium overload therapy efficiently induced cell apoptosis at the moment of uncontrollable cellular accumulation of Ca. In addition, we modified the PVP on the surface to make it more stable. This study presents a bimetallic nanoplatform that can efficiently induce cancer cell death by synergistic sonodynamic-calcium overload therapy modulation of O/ROS/Ca species, indicating its potential for multi-modality cancer therapy.
声动力学疗法 (SDT) 作为传统癌症治疗方法的替代方法,具有深层细胞穿透性和降低的侵袭性。声敏剂在超声激活下产生活性氧物种 (ROS),将超声能量集中在位于组织深部的恶性部位,导致细胞凋亡和坏死。然而,由于肿瘤缺氧和细胞内内源性过氧化氢水平有限 (H2O2 是提供氧气的基本物质,而过氧化氢酶活性限制了其供应),SDT 的疗效仍然不足。在这项研究中,通过使用四(4-氨基苯基)卟啉 (TAPP) 负载的二价和多功能系统 (FeO-TAPP@PVP-CaO) 来制备,该系统使用二价铁氧化物 (FeO) 作为载体,然后用聚乙烯吡咯烷酮 (PVP) 和过氧化钙 (CaO) 进行涂层。当暴露于细胞内酸度时,CaO 层会提高肿瘤微环境中的 H2O2 和 Ca 水平,为生成氧气提供必需的元素。细胞内缺氧得到缓解,FeO 的类过氧化氢酶活性诱导钙超载。在超声照射下,SDT 通过声空化产生有毒的活性氧物种 (ROS、单线态氧) 并激活钙内流。同时,钙超载治疗在细胞内 Ca 不可控积累时有效地诱导细胞凋亡。此外,我们对表面的 PVP 进行了修饰,使其更加稳定。本研究提出了一种双金属纳米平台,通过协同声动力学-钙超载疗法、O/ROS/Ca 物质的调节,有效地诱导癌细胞死亡,表明其在多模式癌症治疗中的潜力。
Int J Nanomedicine. 2024
ACS Appl Mater Interfaces. 2024-4-17