Suppr超能文献

Anthracene-based dual channel donor-acceptor triazine-containing covalent organic frameworks for superior photoelectrochemical sensing.

作者信息

Ma Xionghui, Kang Jinsheng, Cao Wenwen, Wu Yuwei, Pang Chaohai, Li Shuhuai, Yi Zhongsheng, Xiong Yuhao, Li Chunli, Wang Mingyue, Xu Zhi, Li Jianping

机构信息

Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 571101, China.

Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables, Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Haikou 571101, China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China.

出版信息

J Colloid Interface Sci. 2024 Apr;659:665-675. doi: 10.1016/j.jcis.2024.01.050. Epub 2024 Jan 9.

Abstract

Covalent organic frameworks (COFs) exhibit excellent photoelectrically active structures and serve as channels for photon capture and charge carrier transport. However, their relatively high charge-carrier recombination rates and lack of specific recognition sites limit their application in photoelectrochemical sensing. This paper reports a functionalized donor-acceptor (D-A) COF comprising electron-rich polycyclic aromatic moieties and electron-deficient triazines (Tz) incorporating boronic acid through ligand exchange. The number of aromatic rings in the polycyclic aromatic moiety is crucial for establishing an efficient D-A system within COF. In the absence of an external electron donor, the anthracene-based COF exhibited a five-fold enhancement in photocurrent compared to the naphthalene-based COF. The resulting anthracene-based D-A COF exhibited enhanced orbital overlap and electron push-pull interactions, facilitating more effective charge separation. Furthermore, introducing boronic acid enabled the selective enrichment of low-concentration external electron donors, such as dopamine, in the inner Helmholtz plane. This ingenious approach establishes a unique dual-channel D-A system that allows direct measurement of dopamine in serum. Under optimized conditions, the test platform achieves good correspondence for dopamine at 1 to 100 nM and 0.5 to 100 μM with a detecting limit of 0.36 nM (3σ/S, n = 11). This strategy introduces a novel dimension to photoelectrochemical sensing, focusing on the effect of spatial separation between the external electron donor and the photoelectrode interface that intricately shapes the behavior and enhances the performance of the photoelectric system.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验