Zhang Shuai, Tao Zheng, Xu Mingyang, Kan Lun, Guo Chuanpan, Liu Jiameng, He Linghao, Du Miao, Zhang Zhihong
College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou, 450001, P. R. China.
Small. 2024 Jun;20(23):e2310468. doi: 10.1002/smll.202310468. Epub 2024 Jan 11.
The production of hydrogen peroxide (HO) via the two-electron electrochemical oxygen reduction reaction (2e ORR) is an essential alteration in the current anthraquinone-based method. Herein, a single-atom Co─O electrocatalyst is embedded in a defective and porous graphene-like carbon layer (Co─O@PC). The Co─O@PC electrocatalyst shows promising potential in HO electrosynthesis via 2e ORR, providing a high HO selectivity of 98.8% at 0.6 V and a low onset potential of 0.73 V for generating HO. In situ surface-sensitive attenuated total reflection Fourier transform infrared spectra and density functional theory calculations reveal that the electronic and geometric modification of Co─O induced by defective carbon sites result in decreased d-band center of Co atoms, providing the optimum adsorption energies of OOH intermediate. The H-cell and flow cell assembled using Co─O@PC as the cathode present long-term stability and high efficiency for HO production. Particularly, a high HO production rate of 0.25 mol g h at 0.6 V can be obtained by the flow cell. The in situ-generated HO can promote the degradation of rhodamine B and sterilize Staphylococcus aureus via the Fenton process. This work can pave the way for the efficient production of HO by using Co─O single atom electrocatalyst and unveil the electrocatalytic mechanism.
通过双电子电化学氧还原反应(2e ORR)生产过氧化氢(HO)是当前基于蒽醌方法的一项重要改进。在此,一种单原子Co─O电催化剂嵌入到有缺陷的多孔类石墨烯碳层(Co─O@PC)中。Co─O@PC电催化剂在通过2e ORR进行HO电合成方面显示出有前景的潜力,在0.6 V时提供98.8%的高HO选择性以及0.73 V的低起始电位用于生成HO。原位表面敏感衰减全反射傅里叶变换红外光谱和密度泛函理论计算表明,有缺陷的碳位点对Co─O的电子和几何修饰导致Co原子的d带中心降低,提供了OOH中间体的最佳吸附能。使用Co─O@PC作为阴极组装的H型电池和流动电池在HO生产方面具有长期稳定性和高效率。特别地,流动电池在0.6 V时可获得0.25 mol g h的高HO产率。原位生成的HO可通过芬顿过程促进罗丹明B的降解并对金黄色葡萄球菌进行杀菌。这项工作可为使用Co─O单原子电催化剂高效生产HO铺平道路并揭示电催化机理。