Jing Lingyan, Wang Wenyi, Tian Qiang, Kong Yan, Ye Xieshu, Yang Hengpan, Hu Qi, He Chuanxin
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China.
College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
Angew Chem Int Ed Engl. 2024 Aug 5;63(32):e202403023. doi: 10.1002/anie.202403023. Epub 2024 Jul 10.
The efficient electrosynthesis of hydrogen peroxide (HO) via two-electron oxygen reduction reaction (2e ORR) in neutral media is undoubtedly a practical route, but the limited comprehension of electrocatalysts has hindered the system advancement. Herein, we present the design of model catalysts comprising mesoporous carbon spheres-supported Pd nanoparticles for HO electrosynthesis at near-zero overpotential with approximately 95 % selectivity in a neutral electrolyte. Impressively, the optimized Pd/MCS-8 electrocatalyst in a flow cell device achieves an exceptional HO yield of 15.77 mol g h, generating a neutral HO solution with an accumulated concentration of 6.43 wt %, a level sufficiently high for medical disinfection. Finite element simulation and experimental results suggest that mesoporous carbon carriers promote O enrichment and localized pH elevation, establishing a favorable microenvironment for 2e ORR in neutral media. Density functional theory calculations reveal that the robust interaction between Pd nanoparticles and the carbon carriers optimized the adsorption of OOH* at the carbon edge, ensuring high active 2e process. These findings offer new insights into carbon-loaded electrocatalysts for efficient 2e ORR in neutral media, emphasizing the role of carrier engineering in constructing favorable microenvironments and synergizing active sites.
在中性介质中通过两电子氧还原反应(2e ORR)高效电合成过氧化氢(HO)无疑是一条切实可行的途径,但对电催化剂的认识有限阻碍了该体系的发展。在此,我们展示了一种模型催化剂的设计,该催化剂由介孔碳球负载的钯纳米颗粒组成,用于在中性电解质中以接近零的过电位和大约95%的选择性进行HO的电合成。令人印象深刻的是,在流动池装置中优化后的Pd/MCS-8电催化剂实现了15.77 mol g h的优异HO产率,生成了累积浓度为6.43 wt%的中性HO溶液,该浓度足以用于医疗消毒。有限元模拟和实验结果表明,介孔碳载体促进了O的富集和局部pH值的升高,为中性介质中的2e ORR建立了有利的微环境。密度泛函理论计算表明,钯纳米颗粒与碳载体之间的强相互作用优化了OOH*在碳边缘的吸附,确保了高活性的2e过程。这些发现为中性介质中高效2e ORR的碳负载电催化剂提供了新的见解,强调了载体工程在构建有利微环境和协同活性位点方面的作用。