Hilal Muhammad, Yang Woochul, Hwang Yongha, Xie Wanfeng
Department of Physics, Dongguk University, Seoul, 04620, Republic of Korea.
Department of Control and Instrumentation Engineering, Korea University, Sejong, 30019, Republic of Korea.
Nanomicro Lett. 2024 Jan 12;16(1):84. doi: 10.1007/s40820-023-01316-x.
In this study, precise control over the thickness and termination of TiCT MXene flakes is achieved to enhance their electrical properties, environmental stability, and gas-sensing performance. Utilizing a hybrid method involving high-pressure processing, stirring, and immiscible solutions, sub-100 nm MXene flake thickness is achieved within the MXene film on the Si-wafer. Functionalization control is achieved by defunctionalizing MXene at 650 °C under vacuum and H gas in a CVD furnace, followed by refunctionalization with iodine and bromine vaporization from a bubbler attached to the CVD. Notably, the introduction of iodine, which has a larger atomic size, lower electronegativity, reduce shielding effect, and lower hydrophilicity (contact angle: 99°), profoundly affecting MXene. It improves the surface area (36.2 cm g), oxidation stability in aqueous/ambient environments (21 days/80 days), and film conductivity (749 S m). Additionally, it significantly enhances the gas-sensing performance, including the sensitivity (0.1119 Ω ppm), response (0.2% and 23% to 50 ppb and 200 ppm NO), and response/recovery times (90/100 s). The reduced shielding effect of the -I-terminals and the metallic characteristics of MXene enhance the selectivity of I-MXene toward NO. This approach paves the way for the development of stable and high-performance gas-sensing two-dimensional materials with promising prospects for future studies.
在本研究中,通过精确控制TiCT MXene薄片的厚度和终止端,以增强其电学性能、环境稳定性和气体传感性能。利用一种结合高压处理、搅拌和不混溶溶液的混合方法,在硅片上的MXene薄膜内实现了厚度小于100nm的MXene薄片。通过在CVD炉中于650°C的真空和氢气条件下对MXene进行去功能化,然后用连接到CVD的鼓泡器中的碘和溴蒸汽进行再功能化,实现了功能化控制。值得注意的是,引入原子尺寸较大、电负性较低、屏蔽效应减小且亲水性较低(接触角:99°)的碘,对MXene产生了深远影响。它提高了表面积(36.2 cm²/g)、在水/环境中的氧化稳定性(21天/80天)和薄膜电导率(749 S/m)。此外,它还显著提高了气体传感性能,包括灵敏度(0.1119 Ω/ppm)、对50 ppb和200 ppm NO的响应(0.2%和23%)以及响应/恢复时间(90/100 s)。-I端的屏蔽效应降低以及MXene的金属特性提高了I-MXene对NO的选择性。这种方法为开发稳定且高性能的气体传感二维材料铺平了道路,为未来的研究带来了广阔前景。