Kysilov Bohdan, Kuchtiak Viktor, Hrcka Krausova Barbora, Balik Ales, Korinek Miloslav, Fili Klevinda, Dobrovolski Mark, Abramova Vera, Chodounska Hana, Kudova Eva, Bozikova Paulina, Cerny Jiri, Smejkalova Tereza, Vyklicky Ladislav
Laboratory of Cellular Neurophysiology, Institute of Physiology of the Czech Academy of Sciences, Videnska 1083, 14200, Prague 4, Czech Republic.
Stony Brook University, Stony Brook, 100 Nicolls Road, NY, 11794, USA.
Cell Mol Life Sci. 2024 Jan 12;81(1):36. doi: 10.1007/s00018-023-05062-6.
N-methyl-D-aspartate receptors (NMDARs) play a critical role in normal brain function, and variants in genes encoding NMDAR subunits have been described in individuals with various neuropsychiatric disorders. We have used whole-cell patch-clamp electrophysiology, fluorescence microscopy and in-silico modeling to explore the functional consequences of disease-associated nonsense and frame-shift variants resulting in the truncation of GluN2A or GluN2B C-terminal domain (CTD). This study characterizes variant NMDARs and shows their reduced surface expression and synaptic localization, altered agonist affinity, increased desensitization, and reduced probability of channel opening. We also show that naturally occurring and synthetic steroids pregnenolone sulfate and epipregnanolone butanoic acid, respectively, enhance NMDAR function in a way that is dependent on the length of the truncated CTD and, further, is steroid-specific, GluN2A/B subunit-specific, and GluN1 splice variant-specific. Adding to the previously described effects of disease-associated NMDAR variants on the receptor biogenesis and function, our results improve the understanding of the molecular consequences of NMDAR CTD truncations and provide an opportunity for the development of new therapeutic neurosteroid-based ligands.
N-甲基-D-天冬氨酸受体(NMDARs)在正常脑功能中发挥关键作用,并且在患有各种神经精神疾病的个体中已发现编码NMDAR亚基的基因存在变异。我们使用全细胞膜片钳电生理学、荧光显微镜和计算机模拟来探究与疾病相关的无义突变和移码突变导致GluN2A或GluN2B C末端结构域(CTD)截断所产生的功能后果。本研究对变异型NMDARs进行了表征,显示其表面表达和突触定位减少、激动剂亲和力改变、脱敏增加以及通道开放概率降低。我们还表明,天然和合成类固醇硫酸孕烯醇酮和丁酸表孕烷醇酮分别以一种依赖于截断的CTD长度的方式增强NMDAR功能,而且进一步具有类固醇特异性、GluN2A/B亚基特异性和GluN1剪接变体特异性。除了先前描述的与疾病相关的NMDAR变异对受体生物发生和功能的影响外,我们的结果增进了对NMDAR CTD截断分子后果的理解,并为开发基于神经甾体的新型治疗性配体提供了机会。