Suppr超能文献

甘露醇和低钠血症调节钠离子通道功能丧失时的心室传导。

Mannitol and hyponatremia regulate cardiac ventricular conduction in the context of sodium channel loss of function.

机构信息

Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Roanoke, Virginia, United States.

Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, United States.

出版信息

Am J Physiol Heart Circ Physiol. 2024 Mar 1;326(3):H724-H734. doi: 10.1152/ajpheart.00211.2023. Epub 2024 Jan 12.

Abstract

Scn5a heterozygous null () mice have historically been used to investigate arrhythmogenic mechanisms of diseases such as Brugada syndrome (BrS) and Lev's disease. Previously, we demonstrated that reducing ephaptic coupling (EpC) in ex vivo hearts exacerbates pharmacological voltage-gated sodium channel (Na)1.5 loss of function (LOF). Whether this effect is consistent in a genetic Na1.5 LOF model is yet to be determined. We hypothesized that loss of EpC would result in greater reduction in conduction velocity (CV) for the mouse relative to wild type (WT). In vivo ECGs and ex vivo optical maps were recorded from Langendorff-perfused and WT mouse hearts. EpC was reduced with perfusion of a hyponatremic solution, the clinically relevant osmotic agent mannitol, or a combination of the two. Neither in vivo QRS duration nor ex vivo CV during normonatremia was significantly different between the two genotypes. In agreement with our hypothesis, we found that hyponatremia severely slowed CV and disrupted conduction for 4/5 mice, but 0/6 WT mice. In addition, treatment with mannitol slowed CV to a greater extent in relative to WT hearts. Unexpectedly, treatment with mannitol during hyponatremia did not further slow CV in either genotype, but resolved the disrupted conduction observed in hearts. Similar results in guinea pig hearts suggest the effects of mannitol and hyponatremia are not species specific. In conclusion, loss of EpC through either hyponatremia or mannitol alone results in slowed or disrupted conduction in a genetic model of Na1.5 LOF. However, the combination of these interventions attenuates conduction slowing. Cardiac sodium channel loss of function (LOF) diseases such as Brugada syndrome (BrS) are often concealed. We optically mapped mouse hearts with reduced sodium channel expression () to evaluate whether reduced ephaptic coupling (EpC) can unmask conduction deficits. Data suggest that conduction deficits in the mouse may be unmasked by treatment with hyponatremia and perinexal widening via mannitol. These data support further investigation of hyponatremia and mannitol as novel diagnostics for sodium channel loss of function diseases.

摘要

Scn5a 杂合子缺失 () 小鼠一直被用于研究心律失常疾病的发病机制,如 Brugada 综合征 (BrS) 和 Lev 氏病。此前,我们证明了减少 Ephaptic 耦合 (EpC) 在离体心脏中会加剧药理学电压门控钠通道 (Na)1.5 功能丧失 (LOF)。这种效应在遗传 Na1.5 LOF 模型中是否一致仍有待确定。我们假设 EpC 的丧失会导致相对于野生型 (WT) 的 小鼠的传导速度 (CV) 更大的降低。来自 Langendorff 灌注的 和 WT 小鼠心脏记录了体内 ECG 和离体光学图谱。用低渗溶液、临床相关渗透剂甘露醇或两者的组合灌注来减少 EpC。在正常血钠时,两种基因型之间的体内 QRS 持续时间或离体 CV 均无显著差异。与我们的假设一致,我们发现低渗血症严重减慢了 CV 并破坏了 4/5 只 小鼠的传导,但 0/6 只 WT 小鼠。此外,甘露醇处理在 相对于 WT 心脏更能减慢 CV。出乎意料的是,在两种基因型中,甘露醇在低渗血症时的处理并没有进一步减慢 CV,但解决了在 心脏中观察到的传导中断。豚鼠心脏的类似结果表明甘露醇和低渗血症的作用不是种属特异性的。总之,通过低渗血症或甘露醇单独丧失 EpC 会导致 Na1.5 LOF 遗传模型中的传导减慢或中断。然而,这些干预的组合减轻了传导减慢。Brugada 综合征 (BrS) 等心脏钠通道功能丧失 (LOF) 疾病通常是隐匿性的。我们用表达减少的钠通道对小鼠心脏进行光学映射 () ,以评估减少 Ephaptic 耦合 (EpC) 是否可以揭示传导缺陷。数据表明,在 小鼠中,通过低渗血症和甘露醇引起的 peri 扩张治疗可以揭示传导缺陷。这些数据支持进一步研究低渗血症和甘露醇作为钠通道功能丧失疾病的新诊断方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/517c/11221810/9abd1fce3143/ajpheart.00211.2023_f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验