Suppr超能文献

颅脑损伤后长时间意识障碍患者苏醒的预测模型。

A predictive model for awakening in patients with prolonged disorders of consciousness after craniocerebral injury.

机构信息

First Department of Rehabilitation Medicine, Affiliated Hospital with Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, P.R. China.

Department of Rehabilitation Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, P.R. China.

出版信息

Medicine (Baltimore). 2024 Jan 12;103(2):e36701. doi: 10.1097/MD.0000000000036701.

Abstract

This study aimed to develop and validate a nomogram to predict awakening at 1 year in patients with prolonged disorders of consciousness (pDOC). We retrospectively analyzed the data of 381 patients with pDOC at 2 centers. The data were randomly divided into training and validation sets using a ratio of 6:4. For the training set, univariate and multivariate logical regression analyses were used to identify the predictive variables. Receiver operating characteristic curves, calibration curves, and a decision curve analysis were utilized to assess the predictive accuracy, discriminative ability, and clinical utility of the model, respectively. The final model included age, Glasgow Coma Scale score, serum albumin level, and computed tomography midline shift, all of which had a significant effect on awakening after pDOC. For the 1-year awakening in the training set, the model had good discriminative power, with an area under the curve of 0.733 (95% confidence interval: 0.667-0.789). For the validation set, the area under the curve for 1-year awakening was 0.721 (95% confidence interval: 0.617-0.826). Model performance was good for both the training and validation sets according to calibration plots and decision curve analysis. We developed a precise, effective nomogram to assist clinicians in better assessing patients' outcomes, guiding clinical judgment, and personalizing the therapeutic process.

摘要

本研究旨在开发和验证一种列线图,以预测持续意识障碍(pDOC)患者 1 年后的觉醒情况。我们回顾性分析了 2 个中心的 381 例 pDOC 患者的数据。使用 6:4 的比例将数据随机分为训练集和验证集。在训练集中,使用单变量和多变量逻辑回归分析来确定预测变量。使用受试者工作特征曲线、校准曲线和决策曲线分析分别评估模型的预测准确性、区分能力和临床实用性。最终模型包括年龄、格拉斯哥昏迷量表评分、血清白蛋白水平和计算机断层扫描中线移位,这些因素均对 pDOC 后觉醒有显著影响。对于训练集中的 1 年觉醒,该模型具有良好的区分能力,曲线下面积为 0.733(95%置信区间:0.667-0.789)。对于验证集,1 年觉醒的曲线下面积为 0.721(95%置信区间:0.617-0.826)。根据校准图和决策曲线分析,模型在训练集和验证集上的性能均良好。我们开发了一种精确、有效的列线图,以帮助临床医生更好地评估患者的预后,指导临床判断,并实现个体化治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff0b/10783300/47ce7b73d9ad/medi-103-e36701-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验