Research Center for Computational Science, Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan.
Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan.
J Phys Chem Lett. 2024 Jan 25;15(3):725-732. doi: 10.1021/acs.jpclett.3c03052. Epub 2024 Jan 12.
Transporter proteins change their conformations to carry their substrate across the cell membrane. The conformational dynamics is vital to understanding the transport function. We have studied the oxalate transporter (OxlT), an oxalate:formate antiporter from , significant in avoiding kidney stone formation. The atomic structure of OxlT has been recently solved in the outward-open and occluded states. However, the inward-open conformation is still missing, hindering a complete understanding of the transporter. Here, we performed a Gaussian accelerated molecular dynamics simulation to sample the extensive conformational space of OxlT and successfully predicted the inward-open conformation where cytoplasmic substrate formate binding was preferred over oxalate binding. We also identified critical interactions for the inward-open conformation. The results were complemented by an AlphaFold2 structure prediction. Although AlphaFold2 solely predicted OxlT in the outward-open conformation, mutation of the identified critical residues made it partly predict the inward-open conformation, identifying possible state-shifting mutations.
转运蛋白通过改变构象将其底物穿过细胞膜。构象动力学对于理解转运功能至关重要。我们研究了草酸转运蛋白(OxlT),这是一种来自 的草酸:甲酸盐反向转运蛋白,对于避免肾结石形成非常重要。OxlT 的原子结构最近已在开放构象和封闭构象中得到解决。然而,向内开放构象仍然缺失,阻碍了对转运体的全面理解。在这里,我们进行了高斯加速分子动力学模拟,以采样 OxlT 的广泛构象空间,并成功预测了向内开放构象,其中细胞质底物甲酸盐的结合优先于草酸的结合。我们还确定了向内开放构象的关键相互作用。该结果得到了 AlphaFold2 结构预测的补充。尽管 AlphaFold2 仅预测了向外开放构象的 OxlT,但对鉴定出的关键残基的突变使其部分预测了向内开放构象,从而确定了可能的状态转变突变。