Lu Muyu, Gao Fengyu, Tan Yiran, Yi Honghong, Gui Yang, Xu Yan, Wang Ya, Zhou Yuansong, Tang Xiaolong, Chen Linjiang
School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
Institute of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China.
ACS Appl Mater Interfaces. 2024 Jan 24;16(3):3593-3604. doi: 10.1021/acsami.3c18490. Epub 2024 Jan 12.
Mining the scientific literature, combined with data-driven methods, may assist in the identification of optimized catalysts. In this paper, we employed interpretable machine learning to discover ternary metal oxides capable of selective catalytic reduction of nitrogen oxides with ammonia (NH-SCR). Specifically, we devised a machine learning framework utilizing extreme gradient boosting (XGB), identified for its optimal performance, and SHapley Additive exPlanations (SHAP) to evaluate a curated database of 5654 distinct metal oxide composite catalytic systems containing cerium (Ce) element, with records of catalyst composition and preparation and reaction conditions. By virtual screening, this framework precisely pinpointed a CeO-MoO-FeO catalyst with superior NO conversion, N selectivity, and resistance to HO and SO, as confirmed by empirical evaluations. Subsequent characterization affirmed its favorable structural, chemical bulk properties and reaction mechanism. Demonstrating the efficacy of combining knowledge-driven techniques with experimental validation and analysis, our strategy charts a course for analogous catalyst discoveries.
挖掘科学文献并结合数据驱动方法,可能有助于识别优化的催化剂。在本文中,我们采用可解释的机器学习来发现能够用氨选择性催化还原氮氧化物(NH-SCR)的三元金属氧化物。具体而言,我们设计了一个利用极端梯度提升(XGB,因其最佳性能而被识别)和SHapley 加性解释(SHAP)的机器学习框架,以评估一个包含铈(Ce)元素的5654个不同金属氧化物复合催化系统的精选数据库,该数据库记录了催化剂组成、制备和反应条件。通过虚拟筛选,该框架精确地确定了一种具有优异NO转化率、N选择性以及对H₂O和SO₂抗性的CeO₂-MoO₃-Fe₂O₃催化剂,经实证评估得到证实。随后的表征证实了其良好的结构、化学体相性质和反应机理。我们的策略展示了将知识驱动技术与实验验证和分析相结合的有效性,为类似催化剂的发现指明了方向。