Ruan Zilin, Schramm Jakob, Bauer John B, Naumann Tim, Bettinger Holger F, Tonner-Zech Ralf, Gottfried J Michael
Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany.
Universität Leipzig, Fakultät für Chemie und Mineralogie, Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Linnéstraße 2, 04103 Leipzig, Germany.
J Am Chem Soc. 2024 Feb 14;146(6):3700-3709. doi: 10.1021/jacs.3c09392. Epub 2024 Jan 12.
Acenes represent a unique class of polycyclic aromatic hydrocarbons that have fascinated chemists and physicists due to their exceptional potential for use in organic electronics. While recent advances in on-surface synthesis have resulted in higher acenes up to dodecacene, a comprehensive understanding of their fundamental properties necessitates their expansion toward even longer homologues. Here, we demonstrate the on-surface synthesis of tridecacene via atom-manipulation-induced conformational preparation and dissociation of a trietheno-bridged precursor on a Au(111) surface. The generated tridecacene has been investigated by scanning tunneling microscopy and spectroscopy (STM/STS), combined with first-principles calculations. We observe that the STS transport gap (1.09 eV) shrinks again following the gap reopening of dodecacene (1.4 eV). Spin-polarized density functional theory calculations confirm an antiferromagnetic open-shell ground-state electronic configuration for tridecacene in the gas phase. Interestingly, tridecacene's open-shell character is significantly reduced upon interaction with the Au(111) surface despite being only physisorbed. The interaction with the surface leads to a lowering of the magnetization of tridecacene, a reduced gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), compared to the gas phase, and a reduced relative energy to the nonmagnetic state, making it nearly isoenergetic. These observations show qualitatively that the influence of the Au(111) substrate on the properties of long acenes is significant, which is important for interpreting the measured STS transport gaps. Our work contributes to a fundamental understanding of the electronic properties of long acenes, confirming a nonmonotonous length-dependent HOMO-LUMO gap, and to the development of multistep tip-assisted synthesis of elusive compounds.
并苯是一类独特的多环芳烃,因其在有机电子学中具有特殊的应用潜力而吸引了化学家和物理学家的关注。虽然表面合成技术的最新进展已成功制备出了包括十二并苯在内的更高阶并苯,但要全面了解它们的基本性质,还需要进一步拓展到更长链的同系物。在此,我们展示了通过原子操纵诱导的构象制备和三乙烯桥连前驱体在Au(111)表面的解离来实现十三并苯的表面合成。通过扫描隧道显微镜和光谱(STM/STS)以及第一性原理计算对生成的十三并苯进行了研究。我们观察到,在十二并苯的能隙重新打开(1.4 eV)之后,十三并苯的STS传输能隙(1.09 eV)再次缩小。自旋极化密度泛函理论计算证实了气相中十三并苯的反铁磁开壳基态电子构型。有趣的是,尽管十三并苯仅通过物理吸附与Au(111)表面相互作用,但其开壳特征在与表面相互作用时仍显著降低。与气相相比,与表面的相互作用导致十三并苯的磁化强度降低、最高占据分子轨道(HOMO)和最低未占据分子轨道(LUMO)之间的能隙减小,以及相对于非磁性状态的相对能量降低,使其几乎等能。这些观察结果定性地表明,Au(111)衬底对长链并苯性质的影响是显著的,这对于解释测量到的STS传输能隙很重要。我们的工作有助于对长链并苯的电子性质有更基本的理解,证实了HOMO-LUMO能隙与长度的非单调依赖性,并有助于开发难以捉摸的化合物的多步针尖辅助合成方法。