Suppr超能文献

玉米的初生、次生根和侧根表现出特定类型的生长和对水分亏缺的水力响应。

Primary, seminal and lateral roots of maize show type-specific growth and hydraulic responses to water deficit.

机构信息

Institute for Plant Sciences of Montpellier (IPSiM), Univ Montpellier, CNRS, INRAE, Institut Agro, 2 place Viala, 34060 Montpellier, France.

出版信息

Plant Physiol. 2024 Mar 29;194(4):2564-2579. doi: 10.1093/plphys/kiad675.

Abstract

The water uptake capacity of a root system is determined by its architecture and hydraulic properties, which together shape the root hydraulic architecture. Here, we investigated root responses to water deficit (WD) in seedlings of a maize (Zea mays) hybrid line (B73H) grown in hydroponic conditions, taking into account the primary root (PR), the seminal roots (SR), and their respective lateral roots. WD was induced by various polyethylene glycol concentrations and resulted in dose-dependent inhibitions of axial and lateral root growth, lateral root formation, and hydraulic conductivity (Lpr), with slightly distinct sensitivities to WD between PR and SR. Inhibition of Lpr by WD showed a half-time of 5 to 6 min and was fully (SR) or partially (PR) reversible within 40 min. In the two root types, WD resulted in reduced aquaporin expression and activity, as monitored by mRNA abundance of 13 plasma membrane intrinsic protein (ZmPIP) isoforms and inhibition of Lpr by sodium azide, respectively. An enhanced suberization/lignification of the epi- and exodermis was observed under WD in axial roots and in lateral roots of the PR but not in those of SR. Inverse modeling revealed a steep increase in axial conductance in root tips of PR and SR grown under WD that may be due to the decreased growth rate of axial roots in these conditions. Overall, our work reveals that these root types show quantitative differences in their anatomical, architectural, and hydraulic responses to WD, in terms of sensitivity, amplitude and reversibility. This distinct functionalization may contribute to integrative acclimation responses of whole root systems to soil WD.

摘要

根系的吸水能力取决于其结构和水力特性,这些特性共同构成了根系水力结构。在这里,我们研究了在水培条件下生长的玉米(Zea mays)杂种系(B73H)幼苗根系对水分亏缺(WD)的反应,考虑了主根(PR)、胚根(SR)及其各自的侧根。通过使用不同的聚乙二醇浓度来诱导 WD,导致轴向和侧根生长、侧根形成和水力传导率(Lpr)的剂量依赖性抑制,PR 和 SR 对 WD 的敏感性略有不同。WD 对 Lpr 的抑制作用表现出半衰期为 5 至 6 分钟,并且在 40 分钟内完全(SR)或部分(PR)可逆。在两种根类型中,WD 导致水通道蛋白表达和活性降低,这分别通过 13 种质膜内在蛋白(ZmPIP)同工型的 mRNA 丰度监测和叠氮化钠抑制 Lpr 来监测。在轴向根和 PR 的侧根中观察到 WD 下表皮和外皮层的脱乙酰化/木质化增强,但在 SR 的侧根中没有观察到。反向模拟显示,在 WD 下生长的 PR 和 SR 的根尖端轴向导度急剧增加,这可能是由于这些条件下轴向根的生长速度降低所致。总的来说,我们的工作表明,这些根类型在其对 WD 的解剖学、结构和水力响应方面表现出定量差异,表现在敏感性、幅度和可逆性方面。这种独特的功能化可能有助于整个根系对土壤 WD 的综合适应反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e8ae/10980523/06742e55c7a7/kiad675f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验