Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
Tianjin Key Laboratory of Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
Waste Manag. 2024 Mar 1;175:225-234. doi: 10.1016/j.wasman.2023.12.039. Epub 2024 Jan 13.
The arbitrary disposal of used brake pads from motor vehicles has resulted in severe heavy metal pollution and resource wastage, highlighting the urgent need to explore the significant untapped potential of these discarded materials. In this study, The in-situ growth of highly dispersed FeO nanocrystals was achieved by simple oxidation annealing of brake pad debris(BPD). Interestingly, Cu remained unoxidized and acted as a "valence state transformation bridge of FeO" to construct the "triple Fe-C-Cu sites". The Fenton degradation experiment of pollutants was conducted under constant temperature conditions at 40 °C, a stirring rate of 1300 rpm, a pH value of 3, a catalyst dosage of 0.5 g/L, pollutant dosage ranging from 50 to 400 mg/L, and HO dosage of 0.25 g/L. Experimental results showed that BPD treated at 300 °C for 2 h exhibited optimal Fenton-like oxidation activity, achieving rapid degradation of over 90 % of refractory antibiotics, such as tetracycline and ciprofloxacin, in organic wastewater within 10 min. This remarkable performance was mainly attributed to the synergistic effect of "Fe-C-Cu triple sites", where the electron-donating role of C in the Fe-C and Cu-C interfaces facilitated the conversion of the Fe(III) to Fe(II) and Cu(II) to Cu(I). In addition, the ability of Cu to accept electrons at the Fe-Cu interface promoted the transition from Fe (II) to Fe (III). This "balance of electron gain and loss" accelerated the interfacial electron transfer and the recycle of dual Fenton sites, Fe(II)/Fe(III) and Cu(I)/Cu(II), to generate more ·OH from HO. Therefore, this strategy of functionalizing BPD as Fenton-like catalysts without the addition of external Fe provides intriguing prospects for understanding the construction of Fe-based Fenton catalysts and resource utilization of Fe-containing solid waste materials.
汽车刹车片的随意处置导致了严重的重金属污染和资源浪费,凸显了迫切需要探索这些废弃材料巨大的尚未开发潜力。在这项研究中,通过对刹车片碎片(BPD)进行简单的氧化退火,实现了高度分散的 FeO 纳米晶的原位生长。有趣的是,Cu 未被氧化,起到了“FeO 价态转变桥梁”的作用,构建了“三重 Fe-C-Cu 位”。在 40°C 的恒温条件下,以 1300rpm 的搅拌速度、pH 值为 3、催化剂用量为 0.5g/L、污染物用量为 50-400mg/L、HO 用量为 0.25g/L 的条件下进行污染物的芬顿降解实验。实验结果表明,在 300°C 下处理 2h 的 BPD 表现出最佳的类芬顿氧化活性,能够在 10min 内快速降解有机废水中超过 90%的难降解抗生素,如四环素和环丙沙星。这种显著的性能主要归因于“Fe-C-Cu 三重位”的协同作用,其中 Fe-C 和 Cu-C 界面处 C 的供电子作用促进了 Fe(III)向 Fe(II)和 Cu(II)向 Cu(I)的转化。此外,Cu 在 Fe-Cu 界面接受电子的能力促进了从 Fe(II)到 Fe(III)的转变。这种“得失电子的平衡”加速了界面电子转移和双芬顿位点 Fe(II)/Fe(III)和 Cu(I)/Cu(II)的循环,从 HO 中生成更多的·OH。因此,这种将 BPD 功能化为类芬顿催化剂而无需添加外部 Fe 的策略为理解 Fe 基芬顿催化剂的构建和含 Fe 固体废弃物的资源化利用提供了有趣的前景。
Environ Sci Pollut Res Int. 2009-4-8
Environ Sci Pollut Res Int. 2022-10